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M1 : Optimisation

Correction du TD 8

On considère une fonctionnelle α-elliptique J dé�nie sur IRn et on pose :

U = {v ∈ IRn; Cv ≤ d}, C ∈Mm,n(IR), d ∈ IRm.

On suppose que U est non vide.
On considère le problème (P ) (problème primal) trouver u ∈ U tel que

J(u) = inf
v∈U

J(v).

1. On pose Hi(x) = (Cx − d)i pour i = 1, · · · ,m. On cherche donc à minimiser J sous la
contrainte

U := {x ∈ IRn|Hi(x) ≤ 0, ∀ i = 1, · · · ,m}.
Les fonctions Hi sont a�nes donc continues et U est fermé comme intersection de fermés
(H−1i (] −∞, 0]) est fermé comme image réciproque d'un fermé par une application continue).
De plus, C est convexe puisque pour tout u, v ∈ U et pour tout t ∈ [0, 1], on a

C(tu+ (1− t)v) = tCu+ (1− t)Cv ≤ td+ (1− t)d = d.

La fonctionnelle est elliptique, donc continue, strictement convexe et coercice (résultat établi
dans le TD 2). On en déduit que le problème primal (P ) admet une unique solution.
Soit L le lagrangien associé au problème primal.

Le Lagrangien L associé au problème primal, dé�ni sur IRn × IRm
+ , est donné par

L(v, µ) = J(v) +
m∑
i=1

µiHi(v) = J(v) + (tCµ, v)n − (µ, d)m.

D'après un théorème vu en cours, comme J et Hi (i = 1, · · · ,m) sont convexes et dérivables
(les fonctions Hi sont a�nes, donc convexes), les contraintes étant quali�ées (car a�nes), à
une solution du problème (P), on peut associer un vecteur λ ∈ IRm

+ tel que le couple (u, λ) soit
point-selle du Lagrangien L.
Le second problème est encore un problème avec contraintes, mais l'avantage est que la con-
trainte peut être prise en compte plus facilement. Pour résoudre le second problème, on ap-
plique la méthode du gradient projeté à la fonction µ 7→ L(uk, µ). Il est alors aisé de déterminer
l'opérateur de projection sur IRm

+ (voir TD 7).
2. Le couple (u, λ) est point-selle du lagrangien, donc

L(u, λ) = inf
v∈IRn

L(v, λ) = sup
µ∈IRm

+

L(u, µ).
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De la première égalité (L(u, λ) = infv∈IRn L(v, λ)), on déduit que

∇vL(u, λ) = 0

donc
∇J(u) +t Cλ = 0.

D'autre part, comme L(u, λ) = supµ∈IRm
+
L(u, µ), on a aussi

−L(u, λ) = inf
µ∈IRm

+

−L(u, µ).

et la contrainte étant convexe, une condition nécessaire d'extrémun (inéquation d'Euler) est
que

(∇µ(−L(v, λ)), µ− λ)m ≥ 0 ∀ µ ∈ IRm
+ .

Or ∇µL(v, λ) = Cv − d, donc la condition précédente s'exprime sous la forme

(φ(u), µ− λ)m ≤ 0 ∀ µ ∈ IRm
+ ,

où φ(u) := Cu− d. L'inégalité précédente peut s'écrire pour tout nombre ρ > 0

(λ− (λ+ ρφ(u)), µ− λ)m ≥ 0, ∀µ ∈ IRm
+ ,

ce qui montre que λ peut s'interpréter comme la projection sur IRm
+ de l'élément λ+ ρφ(u).

On en déduit que {
∇J(u) +t Cλ = 0,
λ = P+(λ+ ρφ(u)).

(1)

3. La méthode d'Uzawa consiste à résoudre successivement la suite de problèmes : étant donné
λk ∈ IRm

+ (k ∈ IN), trouver uk ∈ IRn tel

L(uk, λk) = inf
v∈IRn

L(v, λk)

puis trouver λk+1 ∈ IRm
+ tel que

L(uk, λk+1) = sup
µ∈IRm

+

L(uk, µ).

Le premier problème de minimisation admet bien une unique solution puisque la fonction ψ
dé�nie par v 7→ J(v)+(tCµ, v)n−(µ, d)m est continue, strictement convexe comme somme d'une
fonction strictement convexe et d'une fonction convexe et coercive. On obtient la coercivité de
ψ à partir de l'inégalité

ψ(v) ≥ J(0) + (∇J(0), v) + α

2
‖v‖2 − ‖tCµ‖‖v‖ − (µ, d)m.

Le second problème d'optimisation admet également au moins une solution car d'une part, la
fonction J est convexe, dérivable et d'autre part, les contraintes sont convexes, dérivables et
quali�ées.
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4. Par dé�nition de la méthode d'Uzawa, on a également{
∇J(uk) +t Cλk = 0,
λk+1 = P+(λ

k + ρφ(uk)).
(2)

5. En soustrayant membre à membre les égalités λ = P+(λ+ ρφ(u)) et λk+1 = P+(λ
k+ ρφ(uk))

et comme l'opérateur de projection est 1-lipschitzien, on déduit que

‖λk+1 − λ‖m ≤ ‖λk − λ+ ρC(uk − u)‖m.

Élevant au carré les deux membres de l'inégalité précédente, et développant le membre de
droite, on obtient

‖λk+1 − λ‖2m ≤ ‖λk − λ‖2m + 2ρ(λk − λ,C(uk − u)) + ρ2‖C‖2‖uk − u‖2n.

Or, d'après (??)-(??) et comme J est α-elliptique, on a aussi

(λk − λ,C(uk − u)) = (∇J(u)−∇J(uk), uk − u) ≤ −α‖uk − u‖2n.

On en déduit que

‖λk+1 − λ‖2m ≤ ‖λk − λ‖2 − ρ{2α− ρ‖C‖2}‖uk − u‖2n.

6. Compte tenu de l'hypothèse 0 < ρ < 2α
‖C‖2 , on déduit que

‖λk+1 − λ‖2m ≤ ‖λk − λ‖2m, ∈ IN.

Ainsi, la suite (‖λk − λ‖m) est décroissante et minorée par 0, donc elle converge. Comme

ρ{2α− ρ‖C‖2}‖uk − u‖2n ≤ ‖λk − λ‖2m − ‖λk+1 − λ‖2m,

on déduit que la suite (uk) converge vers u.
7. La suite (λk) est bornée, donc par compacité, on peut en extraire une sous-suite qui converge
vers un élément λ′ ∈ IRm

+ . Par passage à la limite dans la première équation de (??), on obtient
que cet élément λ′ satisfait

∇J(u) +t Cλ′ = 0.

Comme le rang de C est égal à m, l'image de C est égale à IRm ce qui équivaut à dire que le
noyau de tC est réduit à {0}. En e�et, soit u un élément du noyau de tC. Compte tenu de la
surjectivité de C, il existe z ∈ IRn tel que Cz = u et tCCz = 0. Mais alors

(tCCz, z) = (Cz,Cz) = 0,

donc u = 0.
Comme tC(λ−λ′) = 0, on a λ = λ′. La suite bornée (λk) admet une unique valeur d'adhérence,
donc elle converge vers cette valeur d'adhérence (argument utilisé à plusieurs reprises cette
année).
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