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M1 : Optimisation

Correction devoir N.2

0. L'ensemble U est un convexe fermé de IRn puisque, d'une part, c'est
l'image réciproque de {0} par l'application continue u 7→ Cu, d'autre part,
un sous-espace vectoriel de IRn. J est strictement convexe et coercive (dé-
montré par exemple dans le TD 1 et dit 100 fois !). Il existe donc un unique
u ∈ U solution du problème de minimisation. Les relations (2) ont été
établies dans le TD 6, exercice 3.
1. Soient λ1 ≤ λ2 ≤ · · ·λn les n valeurs propres de A (A est diagonalisable
car symétrique). Elles sont toutes strictement positives puisque A est dé�nie
positive. Si A est symétrique alors I − ρ1A est symétrique, et de plus, on a
dans ce cas

‖I − ρ1A‖2 = ρ(I − ρ1A).
Les valeurs propres de la matrice I − ρ1A sont données par 1− ρ1λ1, · · · , 1−
ρ1λn. On a

‖I − ρ1A‖2 = max(|1− ρ1λ1|, |1− ρ1λn|).
Une étude de la fonction ρ 7→ max{|1− ρλ1|; |1− ρλn|} sur l'intervalle [0, 2

λn
]

permet d'assurer que si le paramètre ρ appartient à [a, b] avec 0 < a < b < 2
λn
,

alors ‖Id− ρ1A‖2 < 1 (cette étude a été menée en travaux dirigés).
Conclusion : Si ρ1 ∈ [a, 2

λn
[ (0 < a < 2

λn
), alors on a

β < 1.

2. On a
‖λk+1 − λ‖2 = ‖λk − λ+ ρ1ρ2Cu

k+1‖2.
On en déduit en développant le membre de gauche et en retranchant le terme
Cu (qui est nul), que

‖λk+1 − λ‖2 = ‖λk − λ‖2 + 2(λk − λ, ρ1ρ2Cuk+1) + ‖ρ1ρ2C(uk+1 − u)‖2.

Utilisant l'inégalité

(C(uk+1 − u), C(uk+1 − u) = (tCC(uk+1 − u), (uk+1 − u)
≤ ‖tCC(uk+1 − u)‖.‖uk+1 − u‖ ≤ ‖tCC‖.‖uk+1 − u‖2.
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on en déduit que

‖λk+1−λ‖2 ≤ ‖λk−λ‖2+2ρ1ρ2(λ
k−λ,Cuk+1)+ (ρ1ρ2)

2‖tCC‖.‖uk+1−u‖2.

3. On a en utilisant la première égalité de (1)

(Id−ρ1A)(uk−u)−ρt1C(λk−λ) = uk−ρ1(Auk−b+tCλk)−u+ρ1Au+ρt1Cλ−ρ1b,

d'où

((Id− ρ1A)(uk − u)− ρt1C(λk − λ), uk+1 − u)
= (uk − ρ1(Auk − b+t Cλk)− u+ ρ1Au+ ρt1Cλ− ρ1b, uk+1 − u).

Comme Au−b+tCλ = 0, et compte tenu de la dé�nition de uk+1, on obtient
l'égalité désirée.
4. RemplaÃ�ons le terme 2ρ1ρ2(Cuk+1−Cu, λk−λ) (Cu = 0) qui apparaÃ®t
dans l'inégalité obtenue en 2. par le terme obtenu en 3. Combinant ainsi les
deux expressions, on obtient (et utilisant le fait que Cu = 0)

‖λk+1 − λ‖2 ≤ ‖λk − λ‖2
+(ρ1ρ2)

2‖tCC‖‖uk+1 − u‖2 + 2ρ2
(
−‖uk+1 − u‖2 + ((Id− ρ1A)(uk − u), uk+1 − u)

)
.

On divise alors chaque membre de l'inégalité par 2ρ2, et on obtient après
quelques calculs élémentaires visant à faire apparaÃ®tre le membre de gauche
de l'inégalité recherchée

(1−ρ
2
1ρ2
2
‖tCC‖)‖uk+1−u‖2 ≤ ‖λ

k − λ‖2

2ρ2
−‖λ

k+1 − λ‖2

2ρ2
+((Id−ρ1A)(uk−u), uk+1−u).

Considérons le terme ((Id−ρ1A)(uk−u), uk+1−u) dans le membre de droite
de l'inégalité précédente. On peut le majorer par β‖uk − u‖‖uk+1 − u‖. On
utilise alors l'inégalité élémentaire 2ab ≤ a2 + b2 pour obtenir l'inégalité

β‖uk − u‖‖uk+1 − u‖ ≤ β

2
(‖uk+1 − u‖2 + ‖uk − u‖2).

On obtient alors

(1− ρ21ρ2
2
‖tCC‖)‖uk+1 − u‖2

≤ ‖λk−λ‖2
2ρ2

− ‖λ
k+1−λ‖2
2ρ2

+ β
2
(‖uk+1 − u‖2 + ‖uk − u‖2)

Ajoutant aux deux membres de l'inégalité précédente l'expression −β‖uk+1−
u‖2, on obtient �nalement(

1− ρ21ρ2
2
‖tCC‖ − β

)
‖uk+1 − u‖2

≤ (
‖λk − λ‖2

2ρ2
+
β

2
‖uk − u‖2)− (

‖λk+1 − λ‖2

2ρ2
+
β

2
‖uk+1 − u‖2).
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5. Naturellement, on doit montrer que (uk) converge vers u. On remarque
d'après la question 4. que la suite (‖λ

k−λ‖2
2ρ2

+ β
2
‖uk − u‖2) est décroissante si

ρ2 est choisi assez petit. Précisément, il su�t de prendre ρ2 assez petit de
telle sorte que

1− ρ21ρ2
2
‖tCC‖ − β > 0,

soit, puisque 1− β > 0

0 < ρ2 <
1− β

ρ21
2
‖tC.C‖

,

pour obtenir d'après 4. l'inégalité

‖λk − λ‖2

2ρ2
+
β

2
‖uk − u‖2 ≤ ‖λ

k+1 − λ‖2

2ρ2
+
β

2
‖uk+1 − u‖2.

Cette suite étant à termes positifs, décroissante, elle converge. Mais l'inégalité
obtenue en 4. implique que (uk) converge vers u puisque le membre de droite
de cette inégalité tend vers 0.
6. Puisque (uk) converge vers u, soustrayant l'équation de récurrence satis-
faite par uk et l'équation satisfaite par u multipliée par ρ1, on obtient

uk+1 = uk − ρ1(A(uk − u) +t C(λk − λ).

On en déduit que (tC(λk − λ)) tend vers 0 puisque uk tend vers u. Comme
C est de rang m, la transposée de C est de rang m, donc le noyau de tC est
réduit à 0. On en déduit que λk tend vers λ.

Correction de la question numéro 3 de l'exercice 2 du TD 7.

Le cas U = {v ∈ IRn; v ≥ 0} a été traité en TD. Traitons de manière
analogue le cas U :=

∏n
i=1[ai, bi]. Soit u ∈ IRn. Notons dans un premier

temps que U est fermé (le produit cartésien de n ensembles fermés de IR est
fermé) et convexe (le produit cartésien de n ensembles convexes de IR est
convexe). U est clairement non vide, on peut donc appliquer le théorème de
projection sur un convexe fermé.
Le cas n = 2 permet de "deviner" l'expression du projeté, noté PU(u) dans le
cas général. Le cas n = 2 conduit à penser que si ui ≤ ai, alors PU(u)i = ai,
si ai ≤ ui ≤ bi alors PU(u)i = ui, en�n, si bi < ui, alors PU(u)i = bi. Pour
établir que l'élément de IRn ainsi dé�ni est bien le projeté, il su�t de démon-
trer qu'il satisfait la caractérisation de PU(u) établie en analyse fonctionnelle,
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à savoir que (PU(u)− u, v − PU(u)) ≥ 0 pour tout v ∈ U .
On a, compte tenu de la dé�nition de PU(u)

(PU(u)− u, v − PU(u)) =∑
i|ui≤ai(ai − ui)(vi − ai) +

∑
i|ai<ui≤bi(ui − ui)(vi − ui) +

∑
i|ui>bi(bi − ui)(vi − bi).

Il est clair que le membre de droite de l'égalité précédente est positif, on en
déduit donc le résultat recherché.
Dans le cas général, la méthode du gradient projeté sur U consiste à con-
struire la suite (uk) dé�nie par

uk+1 = PU(uk − ρ∇J(uk)).

Dans le cas U := IRn
+ et J égale à la fonctionnelle quadratique, on obtient

uik+1 = max(uik − ρ(Auk − b)i, 0), i = 1, · · · , n

uik représentant la ième coordonnée du vecteur uk.
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