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M1 : Optimisation
Correction devoir N.2

0. L’ensemble U est un convexe fermé de IR™ puisque, d’une part, c’est
I'image réciproque de {0} par l'application continue u — Cu, d’autre part,
un sous-espace vectoriel de IR". .J est strictement convexe et coercive (dé-
montré par exemple dans le TD 1 et dit 100 fois !). Il existe donc un unique
u € U solution du probléme de minimisation. Les relations (2) ont été
établies dans le TD 6, exercice 3.

1. Soient A\; < Ay < --- A, les n valeurs propres de A (A est diagonalisable
car symétrique). Elles sont toutes strictement positives puisque A est définie
positive. Si A est symétrique alors I — p; A est symétrique, et de plus, on a
dans ce cas

11 = p1Alla = p(I — p1A).
Les valeurs propres de la matrice I — p; A sont données par 1 — pi A, -+, 1—
p1An. On a
[ = p1All2 = max([1 — prAi],[1 = prAa]).
Une étude de la fonction p — max{|1 — pA1|; |1 — pA,|} sur lintervalle [0, /\%]
permet d’assurer que si le parameétre p appartient a [a, b] avec 0 < a < b < %,

alors [|[Id — p1All2 < 1 (cette étude a été menée en travaux dirigés).
Conclusion : Si p; € [a, %[ 0<a< %), alors on a

£ < 1.

2. On a
[IAFFE = AP = [[A = X+ prpaCu T2,

On en déduit en développant le membre de gauche et en retranchant le terme
Cu (qui est nul), que

IAFE—= X2 = I = A2+ 2008 = X, prpoCu™) + [ p1poC (0 — )2
Utilisant I'inégalité
(C(urt — ), C(uPtt —u) = ((CC (W — u), (uFt —u)
< FOCEE )|+ — ] < [FCC] i — a2
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on en déduit que
A=A <IN = AP 420102 (AF = A, Cu*1) + (o) [ CO [+ — .
3. On a en utilisant la premiére égalité de (1)
(Id—py A)(uF —u)—pl C(NF=X) = uF —py (AP —b+ CN¥) —ut-py Autpi CA—p1b,
d’ou

(14— pAY(u — ) — PO — ), ub* — )

= (u* — p1(AuF — b+ CNF) —u+ prAu+ ptCX — pib, Pt — ).
Comme Au—b+'C)\ = 0, et compte tenu de la définition de u**!, on obtient
I'égalite désirée. ~
4. RemplaAS§ons le terme 2p; po(Cur 1 —Cu, \* =) (Cu = 0) qui apparaA®t

dans I'inégalité obtenue en 2. par le terme obtenu en 3. Combinant ainsi les
deux expressions, on obtient (et utilisant le fait que C'u = 0)

[ (g P
Hp1p*[IFCO [+ = wl® + 202 (=" = ul]? + ((Id = prA) (u* — u),u* ' — ) .
On divise alors chaque membre de l'inégalité par 2p,, et on obtient apreés

quelques calculs élémentaires visant a faire apparaA®)tre le membre de gauche
de l'inégalité recherchée

2 o A=A AT A

1P2 ¢ k+1
A=LA22 o) f —u|
2 2p2 2p2

(Td=pr A —u), i+ ).

Considérons le terme ((Id— pA)(u* —u), u*** —u) dans le membre de droite
de l'inégalité précédente. On peut le majorer par SB|lu® — ul|||u**! — ul|. On
utilise alors 'inégalité élémentaire 2ab < a® + b? pour obtenir I'inégalité

s
Bllu® = ull ™ = ull < (R = wl® + [Ju® — ulf?).

On obtient alors

2
(1= =2 CClut — ul®

)\ki)\ 2 )\k+17)\ 2
< I = ¢ _ |l — Il + g(HukH o uH2 + Huk . uHZ)

Ajoutant aux deux membres de I'inégalité précédente I'expression —f3]|u*+* —

ul|?, on obtient finalement

( _ le H CCH ) ”uk+1 _ u||2
<

)\k: A 2 )\k:-i—l A 2

k+1 2



5. Naturellement, on doit montrer que (u*) converge vers u. On remarque
d’aprés la question 4. que la suite (H)‘];%HQ + gHuk — ul|?) est décroissante si
po est choisi assez petit. Précisément, il suffit de prendre p, assez petit de

telle sorte que
pip2
1-A2pcc) - g >0,

soit, puisque 1 — 3 > 0

1 —
0<p2 < pg—ﬁ,
e
pour obtenir d’aprés 4. 'inégalité
N = A2 By ke N AR B
m v 47 _ <= 7R 42 _ )
e e L

Cette suite étant a termes positifs, décroissante, elle converge. Mais I'inégalité
obtenue en 4. implique que (uy) converge vers u puisque le membre de droite
de cette inégalité tend vers 0.

6. Puisque (u*) converge vers u, soustrayant 1’équation de récurrence satis-
faite par u* et I’équation satisfaite par u multipliée par p;, on obtient

Pt = b — pr(A(uF —w) +CNF =N,

On en déduit que (‘C(N\* — \)) tend vers 0 puisque u* tend vers u. Comme
C' est de rang m, la transposée de C' est de rang m, donc le noyau de ‘C' est
réduit & 0. On en déduit que A\* tend vers \.

Correction de la question numéro 3 de 'exercice 2 du TD 7.

Le cas U = {v € IR"; v > 0} a été traité en TD. Traitons de maniére
analogue le cas U := [[_[a;,b;]. Soit u € IR". Notons dans un premier
temps que U est fermé (le produit cartésien de n ensembles fermés de IR est
fermé) et convexe (le produit cartésien de n ensembles convexes de IR est
convexe). U est clairement non vide, on peut donc appliquer le théoréme de
projection sur un convexe fermé.

Le cas n = 2 permet de "deviner" 'expression du projeté, noté Py (u) dans le
cas général. Le cas n = 2 conduit a penser que si u; < a;, alors Py(u); = a;,
si a; < w; < b; alors Py(u); = u;, enfin, si b; < u;, alors Py(u); = b;. Pour
établir que I’élément de IR™ ainsi défini est bien le projeté, il suffit de démon-
trer qu'’il satisfait la caractérisation de Py (u) établie en analyse fonctionnelle,



a savoir que (Py(u) — u,v — Py(u)) > 0 pour tout v € U.
On a, compte tenu de la définition de Py (u)

(Py(u) —u,v — Py(u)) =
Z““igai(ai o ul)<vl - ai) + Ei|ai<u¢§b¢ (uz - uz)(% - Uz) + Zi|u¢>bi(bi — U1>(Uz - bl)

Il est clair que le membre de droite de 1’égalité précédente est positif, on en
déduit donc le résultat recherché.

Dans le cas général, la méthode du gradient projeté sur U consiste a con-
struire la suite (uy) définie par

g1 = Py(ug — pVJ (ug)).
Dans le cas U := IR} et J égale a la fonctionnelle quadratique, on obtient
uj = max(uj, — p(Auy, — 0);,0), i=1,---,n

uy, représentant la iéme coordonnée du vecteur uy.



