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Exercice 1

On considère la suite de L2(]0, 1[) dé�nie par un(x) := sin(2πnx). L'objectif
est de montrer que (un) converge faiblement vers 0 dans L2(]0, 1[).
On admettra le très important résultat suivant : C∞c (]0, 1[) est dense dans
(Lp(]0, 1[), ‖.‖Lp) pour tout p ≥ 1.
1. E�ectuons une intégration par partie :∫ 1

0
un(t)φ(t)dt = [− 1

2πn
cos(2πnx)φ(x)]10 +

∫ 1

0

1

2πn
cos(2πnx)φ′(x)dx.

On en déduit l'inégalité

|
∫ 1

0
un(t)φ(t)dt| ≤ ‖φ

′‖∞
2πn

,

d'où le résultat.
2. On e�ectue un raisonnement par densité (c'est très utilisé en analyse !).
Soient ε > 0 et v ∈ L2(]0, 1[). Il existe φ ∈ C∞c (]0, 1[) telle que

‖v − φ‖L2 < ε/2.

On a pour tout n

|(un, v)L2| = |(un, v − φ+ φ)L2| ≤ |(un, φ)|+ ‖un‖L2‖v − φ‖L2 . (1)

Or, pour tout n (en e�ectuant le changement de variable u = 2πnx

‖un‖2
L2 =

∫ 1

0
sin2(2πnt)dt =

1

2πn

∫ 2πn

0
sin2(u)du =

n

2πn

∫ 2π

0
sin2(u)du,

d'où

‖un‖2
L2 =

1

2π

∫ 2π

0

1 + cos(2u)

2
du =

1

2
. (2)
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On déduit alors de la question 1 et de (1) et (2), qu'il existe n0 tel que pour
tout n ≥ n0, pour tout v

|(un, v)L2| < ε.

On vient de prouver que (un) converge faiblement vers 0.
3. Si la suite (un) converge fortement dans L2(]0, 1[), alors, d'après la ques-
tion 2, elle converge fortement vers 0 (la convergence forte de (un) vers u
entraîne la convergence faible de (un) vers u et on a montré que (un) con-
verge faiblement vers 0, donc par unicité de la limite, u = 0). Mais pour tout
n, on a ‖un‖L2 = 1√

2
. Conclusion : la suite (un) ne converge pas vers 0.

4. Cette question est sans rapport avec les précédentes. Il faut replacer
la question dans un contexte d'analyse hilbertienne. On considère l'espace
de Hilbert H := H1([0, 1]) muni de la norme induite par le produit scalaire
(u, v)H1 :=

∫ 1
0 u
′v′ + uvdx (voir le TD 7 pour plus d'explications), et on

pose C = IR1[X]. Le convexe non vide C est inclus dans H1([0, 1]). En
e�et, posons p(x) = ax + b. Alors, pour tout φ ∈ C∞c (]0, 1[), on obtient en
e�ectuant une intégration par parties∫ 1

0
p(x)φ′(x)dx = [p(x)φ(x)]10 −

∫ 1

0
aφ′(x) = −

∫ 1

0
aφ′(x)dx.

Ce calcul prouve que p ∈ H1([0, 1]) et que p′(x) = a (on prouve de façon
générale que si f est de classe C1, sa dérivée au sens usuelle coïncide avec sa
dérivée au sens des distributions).
Le polynôme x2 appartient à H. Remarquons que

I(a, b) = ‖x2 − p‖2
H1 .

Minimiser I sur IR2 revient à déterminer

inf
p∈C
‖x2 − p‖2

H1 .

On peut appliquer le théorème de projection sur un convexe fermé (C est un
espace vectoriel de dimension �nie, donc c'est un fermé). Il existe un unique
p0 ∈ C tel que

‖x2 − p0‖2
H1 = inf

p∈C
‖x2 − p‖2

H1 .

De plus, p0 := ax+ b est caractérisé par la relation

(x2 − p0, v)H1 = 0, ∀ v ∈ C.

Comme 1 ∈ C et x ∈ C, en particulier, on a (x2−p0, 1)H1 = (x2−p0, x)H1 = 0.
On obtient ainsi un système linéaire de deux équations à deux inconnues,
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donné par {
−a

2
− b+ 1

3
= 0,

−4
3
a− b

2
+ 5

4
= 0.

dont la solution est (a, b) = (1,−1
6
). On obtient �nalement

I(1,−1

6
) = inf

a,b
I(a, b) =

61

180
.

Exercice 2

On suppose ici Ω =]0, 1[.Pour (u, v) ∈ H1(Ω)×H1(Ω), on pose

a(u, v) =
∫ 1

0
u′v′dx+

∫ 1

0
u(x)dx

∫ 1

0
v(x)dx.

1. Remarquons que a(., .) est une forme bilinéaire et symétrique. Il est clair
que a est symétrique, pour prouver qu'elle est bilinéaire, il su�t de montrer
que a(λu+ v, w) = λa(u,w) + a(v, w) pour tout λ ∈ IR et u, v ∈ H1. On a

a(λu+ v, w) =
∫ 1

0
(λu+ v)′w′dx+

∫ 1

0
(λu+ v)(x)dx

∫ 1

0
w(x)dx.

d'où en utilisant la linéarité de l'intégral et de la dérivation, on obtient

a(λu+ v, w) = λa(u,w) + a(v, w).

Pour montrer que a est continue, o doit trouver une constante M > 0 telle
que

|a(u, v) ≤M‖u‖H1‖v‖H1 , ∀u, v, w.

Remarquons que pour tout u ∈ L2,

|
∫ 1

0
u(x)dx| ≤

∫ 1

0
|u(x)|dx ≤ ‖u‖L2

Il en résulte que

|
∫ 1

0
u(x)dx

∫ 1

0
v(x)dx| ≤ ‖u‖L2‖v‖L2 . (3)

On obtient alors l'inégalité (appliquer l'inégalité de Hölder avec p = 2 et
l'inégalité triangulaire, ainsi que (3))

|a(u, v)| ≤ ‖u′‖L2‖v′‖L2 + ‖u‖L2‖v‖L2 .
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En remarquant les inégalités évidentes ‖u‖L2 ≤ ‖u‖H1 et ‖u′‖L2 ≤ ‖u‖H1

pour tout u ∈ H1, on obtient pour tout u, v ∈ H1([0, 1])

|a(u, v)| ≤ 2‖u‖H1‖v‖H1 .

a(., .) est bien continue.

2. On doit prouver que pour tout f ∈ F ′, la suite (f(T (un))) converge
vers 0. Or, foT ∈ E ′ puisque T est continue (la composée de deux applica-
tions continues est continue). Comme (un) une suite qui converge faiblement
vers 0 dans E, on a foT (un) qui tend vers 0 quand n tend vers l'in�ni. C'est
ce qu'on voulait prouver.
3. On suppose que a(., .) n'est pas coercive. Cela signi�e que quelque soit
α > 0, il existe u ∈ H1(Ω) tel que

a(u, u) < α‖u‖2
H1 .

Posons α = 1
n
, n ∈ IN∗. Puisque que a n'est pas coercive, il existe (un) tel

que

a(
un

‖un‖H1

,
un

‖un‖H1

) <
1

n
.

Posons vn =
un

‖un‖H1

. (vn) est la suite recherchée.

4. L'espace H1(Ω) est un espace de Hilbert, donc de toute suite bornée dans
H1(Ω), on peut extraire une sous-suite qui converge faiblement. Par ailleurs,
l'injection de L2(Ω) dans H1(Ω) étant compact, toute suite bornée de H1(Ω)
admet une sous-suite qui converge fortement dans L2(Ω).
De ces deux faits on déduit qu'il existe une sous-suite (vn′) qui converge faible-
ment vers v dans H1 (puisque (vn) est bornée) et fortement vers w dans L2.
Mais l'injection de H1 dans L2 est continue, et d'après la question 2, on a que
(vn′) converge faiblement vers v dans L2, donc par unicité de la limite, v = w.

5. D'après la question 3., la suite a(vn, vn) tend vers 0 quand n tend vers

l'in�ni. Compte tenu de la dé�nition de a, cela implique que
∫ 1

0
vn′(x)dx→ 0

et ‖v′n′‖L2(Ω) → 0.

6. On note la suite (vn′) par (vn) pour simpli�er les notations. D'après la
question 5, la suite (v′n) converge vers 0 dans L2(Ω), donc elle est de Cauchy
dans L2(Ω) et d'après la question 4., (vn) est aussi de Cauchy dans L2(Ω)
puisqu'elle converge dans cet espace. (vn) étant alors de cauchy dans H1(Ω),
espace complet, donc elle converge vers v.
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7. Comme ‖vn′‖H1(Ω) = 1 pour tout n, il en résulte que ‖v‖H1(Ω) = 1,
donc v 6= 0. Montrons que v = 0 (on obtient ainsi une contradiction, ce qui
entraîne que a est coercive).

D'après la question 5, on a
∫ 1

0
v(x)dx = 0. En e�et, (vn) tend vers v dans

L2, donc, on peut en extraire une sous-suite (vn′) telle que (vn′) tend vers v
p.p. et il existe une fonction h ∈ L2(Ω) ⊂ L1(Ω)) tel que |vn′(x)| ≤ h(x) p.p.
D'après le théorème de convergence dominée

lim
n→+∞

∫ 1

0
vn′(x)dx =

∫ 1

0
lim

n→+∞
vn′(x)dx =

∫ 1

0
v(x)dx = 0.

Mais on a aussi ‖v′n′‖L2(Ω) → ‖v′‖L2(Ω) = 0. Par conséquent, on en déduit que
v = C p.p. où C est une constante. Mais alors∫ 1

0
C.dx = 0,

donc C = 0. On a obtenu la contradiction annoncée.

8. Soit f ∈ L2(Ω). L'application l dé�nie par v 7→
∫ 1
0 f(x)v(x)dx est linéaire

et continue puisque

|
∫ 1

0
f(x)v(x)dx| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1 .

La forme bilinéaire a est continue et coercive d'après ce qui précède. On peut
donc appliquer le théorème de Lax-Milgram. Il existe un unique élément
u ∈ H1(Ω) tel que

a(u, v) = l(v), ∀ v ∈ H1(Ω).

Remarque : puisque a est symétrique, l'élément u est la solution du problème
d'optimisation : trouver u ∈ H1(Ω) tel que

J(u) = inf
v∈H1(Ω)

J(v),

où

J(v) :=
1

2
(
∫ 1

0
v′(t)2 + v(t)2dt+ (

∫ 1

0
v(x)dx)2 −

∫ 1

0
f(x)v(x)dx.

Exercice 3

1. Soit p ≥ 1. On considère la suite de fonctions

un(t) =
√

2nI[− 1
n
, 1
n

](t).
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Si (un) converge faiblement dans Lp, alors elle est bornée dans Lp. Remar-
quons que

‖un‖pLp = 21+p/2n
p
2
−1, ∀n ∈ IN∗. (4)

Il en résulte que si p > 2, la suite est non bornée. Elle ne peut converger ni
faiblement, ni fortement dans ce cas.

On suppose dans la suite que p ∈ [1, 2]. Dans ce cas, (un) est bornée et
on a

‖un‖Lp ≤ 2
1
p

+1/2, ∀n ∈ IN∗.

Le Dual de Lp s'identi�e à Lp
′
où p′ est l'exposant conjugué de p. Montrer

que (un) converge faiblement vers 0 dans Lp équivaut à montrer que

lim
n→∞

∫
IR
un(t)f(t)dt = 0, ∀ f ∈ Lp′ . (5)

On va, dans un premier temps, établir (5) pour des fonctions de classe C∞

à support compact, espace noté C∞c (IR), puis on utilisera la densité de cette
espace dans Lp pour conclure.
Cas 1. Soit φ ∈ C∞c (IR). On a

|
∫
IR
un(t)φ(t)dt| = |

∫ 1
n

− 1
n

√
2nφ(t)dt| ≤

√
2n

2

n
‖φ‖∞ → 0,

quand n→ +∞.
Cas 2. Soient f ∈ Lp

′
et ε > 0. Par densité de C∞c (IR) dans Lp, il existe

φ ∈ C∞c (IR) tel que

‖f − φ‖Lp′ <
ε

2
1
p

+1/2
.

D'après le 1., il existe n0(ε) tel que pour tout n ≥ n0(ε), on a |
∫
IR
un(t)φ(t)dt| ≤

ε

4
. On a alors

|
∫
IR
un(t)f(t)dt| = |

∫
IR
un(t)(f(t)− φ(t) + φ(t)dt|

≤ |
∫
IR
un(t)(f(t)− φ(t))dt|+ |

∫
IR
un(t)φ(t)dt|

≤ ‖f − φ‖Lp′‖un‖Lp + ε
2
< ε.

Conclusion: (un) converge faiblement vers 0 dans L2.

Étude de la convergence forte. Si p = 2, on a d'après (4) ‖un‖Lp = 2
pour tout n. Donc la suite ne converge pas fortement vers 0, puisque si elle
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converge vers x, on doit avoir x = 0 car la convergence forte vers x implique
la convergence faible vers x et on a montré que la suite converge faiblement
vers 0.
Si p 6= 2, alors d'après (4), ‖un‖Lp tend vers 0 avec n: la suite converge
fortement vers 0 dans ce cas.

2. Même question avec la suite de fonctions

un(t) = I[n,n+1](t).

On procède de la même façon que dans la question 1.
Cas 1. Soit φ ∈ C∞c (IR). Notons S le support de φ. Comme le support de φ
est compact, pour n assez grand, S ∩ [n, n+ 1] = ∅. On a donc

lim
n→+∞

∫
IR
φ(t)1]n,n+1[(t)dt = 0.

Cas 2. Soient f ∈ Lp′ et ε > 0. On procède comme dans l'exemple précédent
en utilisant le fait que ‖un‖Lp = 1 pour tout n et pour tout p ≥ 1 (donc,
contrairement à l'exemple précédent, la suite est bornée pour tout p). On en
déduit que (un) converge faiblement vers 0 dans Lp pour tout p. En revanche,
la suite (un) ne converge pas fortement dans Lp vers 0 (et vers quoi que ce
soit d'autre, puisque la convergence forte vers x entraîne la convergence faible
vers x) puisque ‖un‖Lp = 1 pour tout n.
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