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Exercice 1

On considére la suite de L?(]0, 1[) définie par u,(x) := sin(2wnz). L'objectif
est de montrer que (u,,) converge faiblement vers 0 dans L*(]0, 1]).

On admettra le trés important résultat suivant : C2°(]0,1]) est dense dans
(120,10}, || +) pour tout p > 1.

1. Effectuons une intégration par partie :

/01 un(t)p(t)dt = [—21 cos(2mnx)é(z)]§ + / —— cos(2mnx)¢’ (x)dz.

™ 2m™n

On en déduit I'inégalité

[ ooy < 190

2mn

d’ou le résultat.
2. On effectue un raisonnement par densité (c’est trés utilisé en analyse !).
Soient € > 0 et v € L*(]0,1]). I existe ¢ € C°(]0,1[) telle que

v — |2 < €/2.

On a pour tout n

|(un, 0) 2] = [(tn, v = @ + @) 2| < [(un, D) + unllz2llv = 2. (1)

Or, pour tout n (en effectuant le changement de variable u = 27nz

1 1 21N 2
|22 = /0 sin?(2mnt)dt = 3 e sin?(u)du = #/o sin?(u)du,
dot 1 2 1+4cos(2u) , 1
2 ™1+ cos(2u
lunlife = 5- [ =57 du = 5 (2)



On déduit alors de la question 1 et de (1) et (2), qu'il existe ng tel que pour
tout n > ng, pour tout v
| (U, 0) 2| < €.

On vient de prouver que (u,) converge faiblement vers 0.

3. Si la suite (u,) converge fortement dans L*(]0, 1), alors, d’aprés la ques-
tion 2, elle converge fortement vers 0 (la convergence forte de (u,) vers u
entraine la convergence faible de (u,) vers u et on a montré que (u,) con-
verge faiblement vers 0, donc par unicité de la limite, v = 0). Mais pour tout
n, on a ||u,l/r2 = % Conclusion : la suite (u,) ne converge pas vers 0.

4. Cette question est sans rapport avec les précédentes. Il faut replacer
la question dans un contexte d’analyse hilbertienne. On considére I'espace
de Hilbert H := H'([0,1]) muni de la norme induite par le produit scalaire
(u,v) 1 = [y u'v' + wvdz (voir le TD 7 pour plus d’explications), et on
pose C' = IRy[X]. Le convexe non vide C est inclus dans H'([0,1]). En
effet, posons p(r) = ax + b. Alors, pour tout ¢ € C°(]0,1[), on obtient en
effectuant une intégration par parties

/Olp(:t)cﬁ/(x)dx = [p(z)p(x)]g — /01 ad () = — /01 a¢(z)dz.

Ce calcul prouve que p € H'([0,1]) et que p'(z) = a (on prouve de fagon
générale que si f est de classe O, sa dérivée au sens usuelle coincide avec sa
dérivée au sens des distributions).

Le polynéome 22 appartient & H. Remarquons que

I(a,b) = ||2* = pll3p-
Minimiser I sur IR? revient a déterminer
. 2 2
inf [lo" = plan-

On peut appliquer le théoréme de projection sur un convexe fermé (C' est un
espace vectoriel de dimension finie, donc ¢’est un fermé). Il existe un unique
po € C tel que

2 = ol = ing [la? = pl.
De plus, pg := ax + b est caractérisé par la relation
(2% — po,v)gn =0, VwveC.

Comme 1 € C etz € C, en particulier, on a (z2—pg, 1) g1 = (22—poy, )z = 0.
On obtient ainsi un systéme linéaire de deux équations a deux inconnues,



donné par

a— g + % =0.
dont la solution est (a,b) = (1, —%). On obtient finalement

1 ) 61
](17 —6) = lg}l)ff(a,b) = @

Exercice 2
On suppose ici  =]0, 1[.Pour (u,v) € HY(Q) x H'(Q), on pose

1

a(u,v) = /01 u'v'dx + /01 u(x)dx/o v(x)dz.

1. Remarquons que a(.,.) est une forme bilinéaire et symétrique. Il est clair
que a est symétrique, pour prouver qu’elle est bilinéaire, il suffit de montrer
que a(Au + v, w) = Aa(u, w) + a(v,w) pour tout A € R et u,v € H'. On a

1

a(Au+v,w) = /Ol(Au +v)w'dr + /Ol(Au - v)(x)dx/o w(x)dz.
d’ol en utilisant la linéarité de I'intégral et de la dérivation, on obtient
a(Au + v, w) = Aa(u, w) + a(v, w).
Pour montrer que a est continue, o doit trouver une constante M > 0 telle

que
la(u,v) < M||u||g||v||gr, Vu,v,w.

Remarquons que pour tout u € L?,

[ty < [ s <

Il en résulte que

[ wtad [ ofwyda] < ol ol ®)

On obtient alors I'inégalité (appliquer I'inégalité de Holder avec p = 2 et
I'inégalité triangulaire, ainsi que (3))

la(u, v)] < [l 2|Vl 2 + ullz2 o]l 22



En remarquant les inégalités évidentes ||ul|z2 < ||ul|lg et [[v]2 < ||u|lm
pour tout u € H', on obtient pour tout u,v € H'([0, 1])

|a(u, 0)| < 2[|ull g {[v] -
a(.,.) est bien continue.

2. On doit prouver que pour tout f € F’, la suite (f(T(u,))) converge
vers 0. Or, foT € E' puisque T est continue (la composée de deux applica-
tions continues est continue). Comme (u,,) une suite qui converge faiblement
vers 0 dans F, on a foT'(u,) qui tend vers 0 quand n tend vers 'infini. C’est
ce qu’on voulait prouver.

3. On suppose que af.,.) n’est pas coercive. Cela signifie que quelque soit
a > 0, il existe u € H*(Q) tel que

a(u,u) < o u|3.

Posons a = %, n € IN*. Puisque que a n’est pas coercive, il existe (u,) tel
que

1

At ) <

[unl[rn” el ™ 0

Posons v,, = Huuﬁl (v,) est la suite recherchée.
n||H

4. L’espace H'(Q) est un espace de Hilbert, donc de toute suite bornée dans
H'(Q), on peut extraire une sous-suite qui converge faiblement. Par ailleurs,
I'injection de L*(2) dans H'(Q) étant compact, toute suite bornée de H'(Q)
admet une sous-suite qui converge fortement dans L?().

De ces deux faits on déduit qu’il existe une sous-suite (v,) qui converge faible-
ment vers v dans H' (puisque (v,) est bornée) et fortement vers w dans L2
Mais l'injection de H' dans L? est continue, et d’aprés la question 2, on a que
(vnr) converge faiblement vers v dans L?, donc par unicité de la limite, v = w.

5. D’aprés la question 3., la suite a(v,,v,) tend vers 0 quand n tend vers

1

I'infini. Compte tenu de la définition de a, cela implique que / U (x)dz — 0
0

et ||U7/.L/||L2(Q) — 0.

6. On note la suite (v,/) par (v,) pour simplifier les notations. D’aprés la
question 5, la suite (v/,) converge vers 0 dans L?(f2), donc elle est de Cauchy
dans L*(Q) et d’aprés la question 4., (v,) est aussi de Cauchy dans L?*(Q)
puisqu’elle converge dans cet espace. (v,) étant alors de cauchy dans H'(Q),
espace complet, donc elle converge vers v.

4



7. Comme |[vy||mi = 1 pour tout n, il en résulte que ||[v|g) = 1,
donc v # 0. Montrons que v = 0 (on obtient ainsi une contradiction, ce qui
entraine que a est coercive).
1
D’aprés la question 5, on a / v(x)dr = 0. En effet, (v,) tend vers v dans
0

L?, donc, on peut en extraire une sous-suite (v,/) telle que (v,/) tend vers v
p.p. et il existe une fonction h € L*(Q) C L'(Q)) tel que |v(x)| < h(z) p.p.
D’aprés le théoréme de convergence dominée

1

1 1
lim Uy (x)dx = / lim v, (z)der = / v(x)dz = 0.
0 0

n—+oo Jo n——+oo

Mais on a aussi ||v;,||z2) = ||[v'||2() = 0. Par conséquent, on en déduit que
v = C p.p. ou C est une constante. Mais alors

1
/ C.dz =0,
0
donc C' = 0. On a obtenu la contradiction annoncée.

8. Soit f € L*(Q). L’application [ définie par v — [, f(x)v(z)dz est linéaire
et continue puisque

!/0 f@yv(@)de] < | fll2llollz < [ F ]2 ll0ll e

La forme bilinéaire a est continue et coercive d’aprés ce qui précéde. On peut
donc appliquer le théoréme de Lax-Milgram. Il existe un unique élément
u € H(Q) tel que
a(u,v) =1l(v), Yve HY(Q).
Remarque : puisque a est symétrique, I’élément u est la solution du probléme
d’optimisation : trouver u € H* () tel que
J(u)= inf J
(u) = nf J(),
ou
1

J(v) = 2(/01 V(1) + v(t)2dt + (/01 v(x)dz)? — /01 f(x)v(x)dz.

Exercice 3
1. Soit p > 1. On considére la suite de fonctions

un(t) = \/%1[7%7%](15).

3



Si (uy) converge faiblement dans LP, alors elle est bornée dans LP. Remar-
quons que
[unlls = 2720271 Vine IN™. (4)

Il en résulte que si p > 2, la suite est non bornée. Elle ne peut converger ni
faiblement, ni fortement dans ce cas.

On suppose dans la suite que p € [1,2]. Dans ce cas, (u,) est bornée et
on a )
lunllir < 2572, W € V"

Le Dual de L? g’identifie & L ot p/ est I'exposant conjugué de p. Montrer
que (u,) converge faiblement vers 0 dans L? équivaut & montrer que

lim [ u,(t)f(t)dt =0, VfelL”. (5)

n—x JIR

On va, dans un premier temps, établir (5) pour des fonctions de classe C'™
a support compact, espace noté C°(IR), puis on utilisera la densité de cette

espace dans LP pour conclure.
Cas 1. Soit ¢ € C*(IR). On a

y/W m_/mf¢m<ﬂﬁWM%o

quand n — 4o00.
Cas 2. Soient f € L” et e > 0. Par densité de C°(IR) dans LP, il existe
¢ € C°(IR) tel que

1f =0l < 775

9% +1/2

D’aprés le 1., il existe ng(€) tel que pour tout n > ny(e), on a | / un(t)p(t)dt] <
R

i On a alors

| ) f 0yt = | / un(t)(F(H) = 6(t) + o(t)et
<[ n<t>< (t) - dt|+|/un (1)l

< ||f_ ¢||Lp HunHLP + < €.

Conclusion: (u,) converge faiblement vers 0 dans L.

Etude de la convergence forte. Si p = 2, on a d’aprés (4) ||un|r = 2
pour tout n. Donc la suite ne converge pas fortement vers 0, puisque si elle



converge vers x, on doit avoir x = 0 car la convergence forte vers x implique
la convergence faible vers x et on a montré que la suite converge faiblement
vers 0.

Sip # 2, alors d’aprés (4), ||u,||zr tend vers 0 avec n: la suite converge
fortement vers 0 dans ce cas.

2. Meéme question avec la suite de fonctions

up(t) = Iinny (1).

On procede de la méme facon que dans la question 1.
Cas 1. Soit ¢ € C°(IR). Notons S le support de ¢. Comme le support de ¢
est compact, pour n assez grand, SN [n,n+ 1] = 0. On a donc

Jm . O()Lynnr1((t)dt = 0.

Cas 2. Soient f € L¥ et € > 0. On procéde comme dans 'exemple précédent
en utilisant le fait que ||u,||» = 1 pour tout n et pour tout p > 1 (donc,
contrairement a 'exemple précédent, la suite est bornée pour tout p). On en
déduit que (u,) converge faiblement vers 0 dans L pour tout p. En revanche,
la suite (u,) ne converge pas fortement dans L” vers 0 (et vers quoi que ce
soit d’autre, puisque la convergence forte vers x entraine la convergence faible
vers x) puisque ||u,||z» = 1 pour tout n.



