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Exercice 1

4. A noter que N3 est une norme. En effet, N3(x) = 0 si et seulement si
f'(z) = 0 sur pour tout x € [a,b] et [7]|f(s)|ds = 0. De la premiére égal-
ité, on tire que f est constante sur [a,b] (égale & C) et de la seconde que
C(b—a) =0, soit C—0.

Il est clair que N3(Ax) = |[A|N3(x) pour tout A\ € IR et pour tout f € E.
Enfin, on a pour tout f,g € F, par inégalité triangulaire,

b b b
Na(f+9) = [ 176 ro@)lds 1+l < [ 17(5)dst [ lg(s)lds-+1 gl

donc l'inégalité triangulaire N5(f + g) < N3(f) + N3(g) est satisfaite pour
tout f,g € E.
De

fw) = f@) = [ rw,

en posant y = xo (2o est défini dans le TD), en utilisant 'inégalité triangulaire
et | f'(t)] < ||f'|lo pour tout ¢, on déduit dans un premier temps que

I7llo < 1@+ [ 15t ()

Puis, intégrant les deux membres de 'inégalité précédente entre a et b, on

obtient
1 b
1Floe < 5= [ 1F&)ds + (b= @) 1]

5. Compte tenu de la définition de N3, on a pour tout f
N3(f) < (0= a)[lflloc + 1/ loc < maz(1,b—a)Ni(f).

Cherchons a inverser cette inégalité. En ajoutant aux deux membres de (1)
| /||, on obtient :

Ni(f) <max(b—a+1, b_la)Ng(f), v f.



Par conséquent, N; et N3 sont équivalentes. D’aprés les questions précé-
dentes, les trois normes Ni, Ny et N3 sont équivalentes.

6. Rappel : Théoréme: Soit (f,) C E. On suppose qu’il existe a € I tel que
(fn(a)) converge. De plus, on suppose que (f;,) converge uniformément vers
g. Alors (f,) converge uniformément sur I vers f € F et f'(z) = g(x) pour
tout x. On a f € F.

Montrons que (E, Ny) est complet. Soit € > 0 et (f,,) une suite de Cauchy
de E. 1l existe ng tel que pour tout n,m > ng,

Nl(fn - fm) < €.

Compte tenu de la définition de Ny, il en résulte que (f,) et (f)) sont de
Cauchy dans (C°(I),||.||«), espace complet. On peut alors appliquer le
théoréme et en déduire que (f,,) et (f)) converge uniformément respective-
ment vers f et f’. Par conséquent, (E, N7) est complet.
Comme (E, N7) est complet et que les trois normes sont équivalentes, il en
résulte que les espaces (E, Ny), (F, Ns) et (E, N3) sont complets.
2. Par définition, ,

ID| —sup [l

+0 N3(f)
Compte tenu de la définition de Nj, il en résulte que D est continue et
||ID|| < 1. A noter que le sup n’est pas atteint puisque si il existe fy # 0 telle

fo :
que |D||=1= NH:),((}‘L)’ on obtient

b
| 1fols)lds =0
donc fo = 0. Pour montrer que ||D|| > 1, construisons une suite (f,) telle

que
[ falloo

=9, On a alors ||/ |lsc = n pour tout n et

I1D[| >

Vn. (2)

On pose f,(r) = e @
1

Ny(f) =+ (1= e 00)

Faisant tendre n vers I'infini dans (2), on obtient I'inégalité recherchée (|| D] >
1). Conclusion ||D| = 1.

Exercice 2 (d’aprés partiel 2022)
Soit I = [a,b] C R. Soient C°(I) le IR-espace vectoriel des fonctions contin-
ues f: I — IR et N une norme sur C°(). On suppose que :
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a. (C°(I), N) est un IR-espace de Banach.
b. Pour toute suite (f,,) qui converge dans (C°(I), N) vers une limite f, on
a (f,) converge simplement vers f sur I.
1. On a pour tout et pour tout f,g € CO(I), 0,(Af +g) = (\f +g)(z) =
M(z) + g(z). Donc 6, est linéaire. Pour montrer la continuité de cette
application, montrons que N(f, — f) — 0 entraine 6,(f,) tend vers d0,(f).
C’est bien le cas en raison de 'hypothése ii. f, converge simplement vers f
pour tout x. On obtient ainsi la continuité de 6,. D’autre part, pour tout
fe i),

sup 102 (F)] = [l fllec < 00.

2. D’aprés hypothése a., (C°(I), N) est un IR-espace de Banach. Nous
sommes sous les hypothéses du théoréme de Banach-Steinhaus, §, est défini
sur un espace de Banach a valeurs dans un espace de Banach, et de plus,
on a prouvé la condition fondamentale dans la question 1. La conclusion du
théoréme de Banach-Steinhaus est exactement

SUI? ||5xH(CO(I),N)’ < +o00.
xe

On peut la traduire par la condition : il existe C' > 0 telle que pour tout

rel £ ()]
fl’ 0

ou encore en prenant le sup sur x dans l'inégalité précédente
I fllee < CN(f), ¥ feC().

3. Ici, on peut appliquer un corollaire du théoréme de Banach. Soit f
une application définie sur un espace de Banach a valeurs dans un espace de
Banach. On suppose f linéaire, bijective, et continue. Alors f~! est continue.
Considérons I'injection canonique de (C°(I), N) dans (C°(I),]|.||e). D’aprés
la question 2, il existe C' > 0 telle que 'on a

Iflloc < CN(f), ¥ feC).

Il résulte alors du théoréme de Banach que i~! est continue, soit les normes
N et ||.|| sont équivalentes.

Exercice 3
Soient F un espace vectoriel normé et M C E, un sous-espace vectoriel. E’
représente ’ensemble des formes linéaires continues sur F.

On pose M+ ={f € E'| f(x) =0, Vo € M}. On considére une suite (f,)
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d’éléments de M~ convergeant vers f dans E'. A-t-on f € M+ ? On a pour
tout x € B

[fu(2) = f@)] < 1 fo = fllellz]l.

Comme f,(z) = 0 pour tout z et pour tout n, et ||f, — f||z tend vers 0
quand n tends vers +oo, il en résulte que f(z) = 0. M+ est donc fermé. En
procédant de la méme facon, on montre que N+ est fermé.

2. Montrer que M C (M*)*.

Par définition, (M)t = {z € E|f(z) =0 V f € M*'}. Par conséquent,
M C (M*)t. D’aprés la question 1, M+ est fermé. Par conséquent, M C
(M) (si AC B, alors A C B).

3. Démontrons que (M=*)Y C M. Si ce nest pas le cas, il existe 7o € M*
et 79 ¢ M. Remarquons que M est convexe, et que M est convexe fermeé.
On peut alors appliquer le théoréme de Han-Banach (version géométrique).
Il existe un hyperplan qui sépare x, convexe compact avec M, convexe fermé.
Soit f € E', f # 0 telle que

)L

f(zo) < f(x) Vo e M.
M étant un espace vectoriel et f étant linéaire, on a également
flzo) < A f(z) Yee M, Ve R

Or, I'inégalité précédente est impossible pour tout © € M et pour tout A\. En
effet, il existe = tel que f(x) # 0. 1l suffit alors de faire tendre A vers +o00 ou
—oo suivant le signe de f(x) pour obtenir une contradiction. Finalement,

(M)t c M.
D’aprés la question 2., on obtient la conclusion :

M = (M*)*



