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Exercice 1

4. À noter que N3 est une norme. En e�et, N3(x) = 0 si et seulement si
f ′(x) = 0 sur pour tout x ∈ [a, b] et

∫ b
a |f(s)|ds = 0. De la première égal-

ité, on tire que f est constante sur [a, b] (égale à C) et de la seconde que
C(b− a) = 0, soit C=0.
Il est clair que N3(λx) = |λ|N3(x) pour tout λ ∈ IR et pour tout f ∈ E.
En�n, on a pour tout f, g ∈ E, par inégalité triangulaire,

N3(f+g) =
∫ b

a
|f(s)+g(s)|ds+‖f ′+g′‖∞ ≤

∫ b

a
|f(s)|ds+

∫ b

a
|g(s)|ds+‖f ′‖∞+‖g′‖∞,

donc l'inégalité triangulaire N3(f + g) ≤ N3(f) + N3(g) est satisfaite pour
tout f, g ∈ E.
De

f(y)− f(x) =
∫ y

x
f ′(t)dt,

en posant y = x0 (x0 est dé�ni dans le TD), en utilisant l'inégalité triangulaire
et |f ′(t)| ≤ ‖f ′‖∞ pour tout t, on déduit dans un premier temps que

‖f‖∞ ≤ |f(x)|+
∫ b

a
‖f ′‖∞dt. (1)

Puis, intégrant les deux membres de l'inégalité précédente entre a et b, on
obtient

‖f‖∞ ≤
1

b− a

∫ b

a
|f(s)|ds+ (b− a)‖f ′‖∞.

5. Compte tenu de la dé�nition de N3, on a pour tout f

N3(f) ≤ (b− a)‖f‖∞ + ‖f ′‖∞ ≤ max(1, b− a)N1(f).

Cherchons à inverser cette inégalité. En ajoutant aux deux membres de (1)
‖f ′‖∞, on obtient :

N1(f) ≤ max(b− a+ 1,
1

b− a
)N3(f), ∀ f.
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Par conséquent, N1 et N3 sont équivalentes. D'après les questions précé-
dentes, les trois normes N1, N2 et N3 sont équivalentes.
6. Rappel : Théorème: Soit (fn) ⊂ E. On suppose qu'il existe a ∈ I tel que
(fn(a)) converge. De plus, on suppose que (f ′n) converge uniformément vers
g. Alors (fn) converge uniformément sur I vers f ∈ E et f ′(x) = g(x) pour
tout x. On a f ∈ E.
Montrons que (E,N1) est complet. Soit ε > 0 et (fn) une suite de Cauchy
de E. Il existe n0 tel que pour tout n,m ≥ n0,

N1(fn − fm) < ε.

Compte tenu de la dé�nition de N1, il en résulte que (fn) et (f ′n) sont de
Cauchy dans (C0(I), ‖.‖∞), espace complet. On peut alors appliquer le
théorème et en déduire que (fn) et (f ′n) converge uniformément respective-
ment vers f et f ′. Par conséquent, (E,N1) est complet.
Comme (E,N1) est complet et que les trois normes sont équivalentes, il en
résulte que les espaces (E,N1), (E,N2) et (E,N3) sont complets.
2. Par dé�nition,

‖D‖ = sup
f 6=0

‖f ′‖
N3(f)

.

Compte tenu de la dé�nition de N3, il en résulte que D est continue et
‖D‖ ≤ 1. À noter que le sup n'est pas atteint puisque si il existe f0 6= 0 telle
que ‖D‖ = 1 =

‖f ′
0‖

N3(f0)
, on obtient

∫ b

a
|f0(s)|ds = 0

donc f0 = 0. Pour montrer que ‖D‖ ≥ 1, construisons une suite (fn) telle
que

‖D‖ ≥ ‖f
′
n‖∞

N3(fn)
∀n. (2)

On pose fn(x) = e−n(x−a). On a alors ‖f ′n‖∞ = n pour tout n et

N3(fn) = n+
1

n
(1− e−n(b−a)).

Faisant tendre n vers l'in�ni dans (2), on obtient l'inégalité recherchée (‖D‖ ≥
1). Conclusion ‖D‖ = 1.

Exercice 2 (d'après partiel 2022)
Soit I = [a, b] ⊂ IR. Soient C0(I) le IR-espace vectoriel des fonctions contin-
ues f : I → IR et N une norme sur C0(I). On suppose que :

2



a. (C0(I), N) est un IR-espace de Banach.
b. Pour toute suite (fn) qui converge dans (C0(I), N) vers une limite f , on
a (fn) converge simplement vers f sur I.
1. On a pour tout et pour tout f, g ∈ C0(I), δx(λf + g) = (λf + g)(x) =
λf(x) + g(x). Donc δx est linéaire. Pour montrer la continuité de cette
application, montrons que N(fn − f) → 0 entraîne δx(fn) tend vers δx(f).
C'est bien le cas en raison de l'hypothèse ii. fn converge simplement vers f
pour tout x. On obtient ainsi la continuité de δx. D'autre part, pour tout
f ∈ C0(I),

sup
x∈I
|δx(f)| = ‖f‖∞ <∞.

2. D'après l'hypothèse a., (C0(I), N) est un IR-espace de Banach. Nous
sommes sous les hypothèses du théorème de Banach-Steinhaus, δx est dé�ni
sur un espace de Banach à valeurs dans un espace de Banach, et de plus,
on a prouvé la condition fondamentale dans la question 1. La conclusion du
théorème de Banach-Steinhaus est exactement

sup
x∈I
‖δx‖(C0(I),N)′ < +∞.

On peut la traduire par la condition : il existe C > 0 telle que pour tout
x ∈ I,

|f(x)|
N(f)

≤ C, ∀ f ∈ C0(I).

ou encore en prenant le sup sur x dans l'inégalité précédente

‖f‖∞ ≤ CN(f), ∀ f ∈ C0(I).

3. Ici, on peut appliquer un corollaire du théorème de Banach. Soit f
une application dé�nie sur un espace de Banach à valeurs dans un espace de
Banach. On suppose f linéaire, bijective, et continue. Alors f−1 est continue.
Considérons l'injection canonique de (C0(I), N) dans (C0(I), ‖.‖∞). D'après
la question 2, il existe C > 0 telle que l'on a

‖f‖∞ ≤ CN(f), ∀ f ∈ C0(I).

Il résulte alors du théorème de Banach que i−1 est continue, soit les normes
N et ‖.‖ sont équivalentes.

Exercice 3

Soient E un espace vectoriel normé et M ⊂ E, un sous-espace vectoriel. E ′

représente l'ensemble des formes linéaires continues sur E.
On pose M⊥ = {f ∈ E ′ | f(x) = 0, ∀x ∈ M}. On considère une suite (fn)
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d'éléments de M⊥ convergeant vers f dans E ′. A-t-on f ∈M⊥ ? On a pour
tout x ∈ E

|fn(x)− f(x)| ≤ ‖fn − f‖E′‖x‖.

Comme fn(x) = 0 pour tout x et pour tout n, et ‖fn − f‖E′ tend vers 0
quand n tends vers +∞, il en résulte que f(x) = 0. M⊥ est donc fermé. En
procédant de la même façon, on montre que N⊥ est fermé.
2. Montrer que M̄ ⊂ (M⊥)⊥.
Par dé�nition, (M⊥)⊥ = {x ∈ E|f(x) = 0 ∀ f ∈ M⊥}. Par conséquent,
M ⊂ (M⊥)⊥. D'après la question 1, M⊥⊥ est fermé. Par conséquent, M̄ ⊂
(M⊥)⊥ (si A ⊂ B, alors Ā ⊂ B̄).
3. Démontrons que (M⊥)⊥ ⊂ M̄ . Si ce n'est pas le cas, il existe x0 ∈ M⊥)⊥

et x0 /∈ M̄ . Remarquons que M est convexe, et que M̄ est convexe fermé.
On peut alors appliquer le théorème de Han-Banach (version géométrique).
Il existe un hyperplan qui sépare x0 convexe compact avec M̄ , convexe fermé.
Soit f ∈ E ′, f 6= 0 telle que

f(x0) < f(x) ∀x ∈M.

M étant un espace vectoriel et f étant linéaire, on a également

f(x0) < λ.f(x) ∀x ∈M, ∀ λ ∈ IR.

Or, l'inégalité précédente est impossible pour tout x ∈M et pour tout λ. En
e�et, il existe x tel que f(x) 6= 0. Il su�t alors de faire tendre λ vers +∞ ou
−∞ suivant le signe de f(x) pour obtenir une contradiction. Finalement,

(M⊥)⊥ ⊂ M̄.

D'après la question 2., on obtient la conclusion :

M̄ = (M⊥)⊥
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