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1 Introduction

De nombreux problèmes issus de la physique, de la chimie, de la biologie, de
l'économie et des �nances conduisent à l'élaboration de modèles mathéma-
tiques. L'exploitation de ces modèles nécessite fréquemment d'avoir recours
à l'utilisation de méthodes numériques. L'analyse numérique d'un problème
se décompose alors en quatre étapes.
1. Modélisation. Obtention d'un modèle mathématiques du problème con-
sidéré. Ce modèle peut être constitué d'une équation di�érentielle ou d'une
équation aux dérivées partielles, d'un système d'équations non linéaires, ...
2. Ces modèles sont très di�ciles à résoudre mathématiquement, voire im-
possible à résoudre de façon exacte.
Il est alors nécessaire d'envisager un choix de méthodes numériques a�n
d'étudier et d'exploiter le modèle.
3. Programmation.
4. Exécution du calcul numérique et interprétation des résultats.
Dans de très nombreux cas, il est impossible de résoudre de façon exacte une
équation di�érentielle ou de calculer une intégrale.
L'objectif du cours d'analyse numérique est de déterminer des méthodes pour
calculer la valeur numérique (valeur approchée) d'une intégrale, ou d'une
équation. Certaines de ces méthodes seront implémentées sur ordinateur lors
des travaux pratiques.
Ce cours est essentiellement subdivisé en trois parties :

� Interpolation polynomiale.

� Intégration numérique.

� Résolution de l'équation f(x) = 0.

Dans la première partie, on abordera le problème de l'interpolation polynômi-
ale. Etant donné n + 1 points distincts x0 < · · · < xn d'un intervalle [a, b],
et f : [a, b] → IR une fonction donnée, on cherche un polynôme P de degré
le plus petit possible satisfaisant

P (xi) = f(xi) i = 0, · · · , n. (1.1)
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On montrera qu'il existe un unique polynôme de degré inférieur ou égal à n
satisfaisant (1.1).
Dans un second temps, on montrera qu'il est possible de calculer P par récur-
rence sur n par la méthode des di�érences divisées.
Puis on abordera le problème d'interpolation de Hermite. Etant donné
(yi)0≤i≤n et (zi)0≤i≤n, on cherche un polynôme P de degré le plus petit pos-
sible satisfaisant les conditions

P (xi) = yi i = 0, · · · , n, P ′(xi) = zi i = 0, · · · , n. (1.2)

On établira qu'il existe un unique polynôme de degré inférieur ou égal à 2n+1
satisfaisant (1.2).
Dans un troisième temps, on montrera qe l'on peut choisir les (xi) de manière
à minimiser l'erreur d'interpolation e(x) := |f(x)− P (x)|.
Dans la seconde partie, on déduira de la méthode d'interpolation une méth-
ode a�n de déterminer la valeur approchée d'une intégrale d'une fonction
d'une variable (formules de Newton-côtes). On présentera les méthodes dites
des rectangles, des trapèzes ainsi que la méthode de Simpson. On étudiera
dans chaque cas l'erreur obtenue en ayant recours à la méthode de Péano.
La troisième partie est consacrée à la résolution de l'équation f(x) = 0. Dans
un premier temps, on rappellera la méthode de dichotomie, puis on abordera
des méthodes de type point �xe, reposant sur le très important théorème
du point �xe. En particulier, on étudiera la méthode des approximations
successives ainsi que la méthode de la corde. On montrera que la vitesse
de convergence de ces méthodes est �géométrique�. La dernière partie sera
consacrée à la méthode de Newton. On montrera notamment que la vitesse
de convergence de cette méthode est quadratique et que par conséquent, elle
est la plus e�cace pourvu qu'elle converge.

2 Interpolation polynômiale

2.1 Rappels

2.1.1 Théorèmes de Rolle et des accroissements �nis

On rappelle les énoncés de deux théorèmes importants en analyse réelle, le
théorème de Rolle et des acroissements �nis.

Théorème 2.1 (Rolle) Soit f de [a, b] dans IR, continue sur [a, b], dérivable
sur ]a, b[ telle que f(a) = f(b). Alors il existe c ∈]a, b[ tel que

f ′(c) = 0.
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Démonstration. Cas 1. f est constante sur [a, b]. Alors pour tout x ∈]a, b[,
f ′(x) = 0.
Cas 2. La fonction f est non constante sur [a, b]. La fonction f étant continue
sur [a, b], l'image de [a, b] par f est un intervalle fermé borné de IR (l'image
d'un compact connexe par une application continue est un compact connexe
de IR). Etant donné que f(a) = f(b) et que f est non constante sur [a, b], elle
admet un maximum ou un minimum sur [a, b] atteint en un point c distinct
de a et de b. En ce point, on a f ′(c) = 0, ce qui achève la preuve du théorème.

Du théorème de Rolle, on déduit l'important théorème suivant :

Théorème 2.2 (Acroissements �nis)
Soit f : [a, b]→ IR continue sur [a, b] et dérivable ]a, b[.
Alors il existe c ∈]a, b[ tel que

f(b)− f(a)

b− a
= f ′(c).

Preuve du théorème des accroissements �nis
L'équation de la droite passant par A(a, f(a)) et B(b, f(b)) est donnée par

y = f(a) +
f(b)− f(a)

b− a
(x− a).

On considère la fonction auxiliaire dé�nie sur [a, b] par

F (x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

La fonction F satisfait les hypothèses du théorème de Rolle puisque f est
continue sur [a, b] et dérivable sur ]a, b[. On a clairement F (a) = 0). D'autre
part, on a

F (b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a) = f(b)− f(a)− (f(b)− f(a)) = 0.

Les hypothèses du théorème de Rolle sont satisfaites, on en déduit qu'il existe
c ∈]a, b[ tel que

F ′(c) = 0 = f ′(c)− f(b)− f(a)

b− a
,

d'où le résultat.

Le théorème des accroissement �nis permet de conclure sur la monotonie
d'une fonction à partir de sa dérivée.
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Corollaire 2.3 Soit f : [a, b]→ IR une fonction continue sur [a, b] et dériv-
able sur ]a, b[. Alors on a f ′(x) ≥ 0 sur ]a, b[ si et seulement si f est crois-
sante sur [a, b].

Démonstration Montrons que si f ′(x) ≥ 0 sur ]a, b[, f est croissante sur
[a, b]. Soit (u, v) ∈ [a, b]2, u ≤ v. D'après le théorème 2.2, il existe c ∈]u, v[
tel que

f(v)− f(u) = f ′(c)(v − u).

Il en résulte aussitôt que f(u) ≤ f(v) (u ≤ v et f ′(c) ≥ 0), donc f est
croissante sur [a, b].
Réciproquement, soient x0 ∈]a, b[ et h > 0 tels que x0 + h ∈]a, b[. Comme f
est croissante, on a f(x0 + h)− f(x0) > 0 et donc

lim
h→0+

f(x0 + h)− f(x0)

h
= f ′(x0) ≥ 0.

2.1.2 Le théorème des valeurs intermédiaires

On rappelle l'important théorème suivant, dit théorème des valeurs intermé-
diaires ;

Théorème 2.4 Soit f une fonction dé�nie sur [a, b], continue sur [a, b] telle
que f(a).f(b) ≤ 0. Alors il existe c ∈ [a, b] tel que f(c) = 0.

On déduit du théorème 2.4 la proposition suivante (deuxième formule de la
moyenne, version discrète, utile en intégration) :

Proposition 2.5 Soient f : [a, b] → IR une fonction continue et (gi)0≤i≤n,
n + 1 nombres positifs (ou négatifs). Soient (xi), n + 1 points distincts de
[a, b].
Alors, il existe ζ ∈ [a, b] tel que

n∑
i=0

f(xi)gi = f(ζ)
n∑
i=0

gi. (2.1)

Preuve
On suppose ici gi ≥ 0 pour tout i. Si f est constante, le résultat est triviale-
ment vrai. Supposons f non constante sur [a, b].
Considérons la fonction ψ : x 7→

∑n
i=0(f(xi) − f(x))gi. Comme la fonc-

tion f est continue sur [a, b], ψ admet un minimum et un maximum atteints
respectivement en x̄ et x̂. On a alors

ψ(x̄) ≥ 0 et ψ(x̂) ≤ 0.
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La fonction ψ est continue sur [a, b], elle satisfait les hypothèses du théorème
des valeurs intermédiaires. On déduit du théorème des valeurs intermédi-
aires qu'il existe ζ ∈ [a, b] tel que ψ(ζ) = 0, ce qui achève la preuve de la
proposition.

2.1.3 Racines d'un polynôme

Le théorème suivant sera fréquemment utilisé dans la suite du cours.

Théorème 2.6 Soit P ∈ C[X] de degré n ≥ 1. On suppose qu'il existe
α ∈ C tel que P (α) = 0.
Alors, il existe un polynôme Q de degré n− 1 tel que

P (z) = (z − α)Q(z).

Preuve
On e�ectue la division euclidienne de P par z−α. On déduit qu'il existe un
polynôme Q de degré n− 1 et C ∈ C tel que

P (z) = Q(z)(z − α) + C.

On a
P (α) = C = 0,

d'où la conclusion du théorème.

Remarque 2.7 Il résulte du théorème 2.6 qu'un polynôme de degré inférieur
ou égal à n admettant n+ 1 racines est le polynôme nul.

On rappelle également ici le très important théorème dû à d'Alembert et à
Gauss.

Théorème 2.8 (Alembert-Gauss)Un polynôme à coe�cients complexes non
constant admet au moins une racine dans C. Par conséquent, s'il est de
degré n 6= 0, il admet exactement n racines.

Preuve Soient n ∈ IN∗ et P (z) = anz
n+an−1z

n−1+· · ·+a0, avec an 6= 0. On
considère la fonction f dé�nie sur C à valeurs réelles f(z) := |P (z)|. Posons

m = inf
z∈C
|P (z)|.

Comme le degré de P est supérieur ou égal à 1, on a |P (z)| → +∞ quand
|z| → +∞ et on peut se ramener à un disque fermé pour chercher le minimum
de f sur C. Comme f est continue et que les compacts de C sont les sous-
ensembles fermés et bornés de C, la fonction f admet un minimum (noté c0)
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sur C atteint en z0.
E�ectuons le changement de variable u = z − z0. On a alors

P (z) = P (u+ z0) = c0 + c1u+ · · ·+ cnu
n.

Supposons que P n'admette pas de racine dans C, autrement dit que

c0 6= 0.

Soit p ∈ IN∗, le plus petit indice tel que cp 6= 0. On a

P (u+ z0) = c0(1 +
cp
c0
up + · · ·+ cn

c0
un).

Le nombre complexe − c0
cp

admet une racine p-ième, autrement dit, il existe

λ ∈ C telle que λp = −c0
cp
. E�ectuons alors le changement de variable u = λv.

On obtient

P (λv + z0) = c0

(
1− vp + · · ·+ cn

c0
λnvn

)
,

ou encore
P (λv + z0) = c0(1− vp + vpε(v))

où ε(v) tend vers 0 quand v tend vers 0.
Il existe v0 ∈ C tel que |1 − vp0 + vp0ε(v0)| < 1. Il su�t de prendre v0 > 0
assez proche de 0 pour obtenir cette inégalité. Ainsi, on obtient :

|P (λv0 + z0)| < |c0|

ce qui contredit le fait que c0 est le minimum de f . Donc P admet au moins
une racine dans C. Il résulte alors du théorème 2.6 qu'il admet exactement
n racines.

2.1.4 Formules de Taylor

1. Formule de Taylor avec reste de Young.

Théorème 2.9 Soit f une fonction dé�nie sur I, n fois dérivable au point
d'abscisse x = a ∈ I. Alors f admet un développement limité d'ordre n en a
et de plus, on a pour x ∈ I

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + (x− a)nε(x− a), (2.2)

où limx→a ε(x− a) = 0.
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Preuve On peut sans perdre en généralités établir le résultat en x = 0. Il
su�t de poser g(x) = f(x+ a). La preuve est donc établie en x = 0.
La formule est vraie pour n = 1. Il a été établi en analyse appliquée que f est
dérivable au point x = 0 si et seulement si elle admet un développement
limité d'ordre 1 en ce point.
La preuve de la formule de Taylor-Young s'obtient par récurrence sur n en
appliquant le théorème des accroissements �nis entre 0 et x à la fonction φ
dé�nie par

φ(x) := f(x)−
n∑
k=0

f (k)(0)

k!
xk. (2.3)

En e�et, supposons le résultat vrai au rang n − 1 (n ≥ 2) et considérons
la fonction φ dé�nie en (2.3). On a φ(0) = 0 et d'autre part, appliquant
le théorème des accroissements �nis entre 0 et x, on obtient qu'il existe un
nombre cx ∈]x, 0[∪]0, x[ tel que

φ(x)− φ(0) = φ′(cx)x. (2.4)

Mais la fonction f ′ est n−1 fois dérivable et on peut lui appliquer l'hypothèse
de récurrence. On a donc

f ′(x) = f ′(0) + f ′′(0)x+ · · ·+ f (n)(0)

(n− 1)!
xn−1 + xn−1ε(x),

où limx→0 ε(x) = 0. On déduit alors de (2.3) et (2.4) que

f(x)−
n∑
k=0

f (k)(0)

k!
xk = φ′(cx)x = xcn−1x ε(cx).

On a alors

xcn−1x ε(cx) = xn
cn−1x

xn−1
ε(cx).

On pose ε1(x) = cn−1
x

xn−1 ε(cx). Compte tenu de la dé�nition de cx (en particulier
du fait que cx tend vers 0 quand x tend vers 0), on en déduit que

f(x)−
n∑
k=0

f (k)(0)

k!
xk = xnε1(x),

avec ε1(x) qui tend vers 0 quand x tend vers 0. Le résultat est donc vrai au
rang n, ce qui achève la preuve du théorème.

2. Formule de Taylor avec reste intégral.
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Théorème 2.10 Soient f une fonction de classe Cn+1 sur I et a ∈ I. On
a l'égalité

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n +Rn(x), (2.5)

où

Rn(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t)dt =

∫ 1

0

(1− t)n

n!
f (n+1)(a+t(x−a))(x−a)n+1dt.

(2.6)

On donne ici la preuve de la formule de Taylor avec reste intégral. Elle repose
sur le lemme suivant :
Lemme
Soit v une fonction dé�nie sur I de classe Cn+1. On a l'égalité

d

dx
[v(x) + (1− x)v′(x) + · · ·+ (1− x)n

n!
v(n)(x)] =

(1− x)n

n!
v(n+1)(x) (2.7)

Démonstration du lemme E�ectuons une récurence sur n.
Si n = 0, l'égalité est satisfaite. Supposons l'égalité satisfaite au rang n et
montrons qu'elle est vraie au rang n+ 1. On a

d

dx
[v(x) + (1− x)v′(x) + · · ·+ (1− x)n

n!
v(n)(x) +

(1− x)n+1

(n+ 1)!
v(n+1)(x)]

=
d

dx
[v(x) + (1− x)v′(x) + · · ·+ (1− x)n

n!
v(n)(x)] +

d

dx

(
(1− x)n+1

(n+ 1)!
v(n+1)(x)

)
=

(1− x)n

n!
v(n+1)(x)− (n+ 1)

(1− x)n

(n+ 1)!
v(n+1)(x) +

(1− x)n+1

(n+ 1)!
v(n+2)(x)

d'où le résultat.

De l'égalité (2.7), intégrée entre 0 et 1, on déduit immédiatement la propo-
sition

Proposition 2.11 Soit v une fonction de classe Cn+1 sur [0, 1]. On a
l'égalité

v(1)− v(0)− v′(0)− · · · − 1

n!
vn(0) =

∫ 1

0

(1− t)n

n!
v(n+1)(t)dt. (2.8)

Démonstration du théorème 2.10 On pose v(t) = f(a+ t(x− a)). On a
alors pour tout t ∈ I

v(n)(t) = f (n)(a+ t(x− a))(x− a)n.
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En réecrivant l'égalité (2.29), on déduit (2.10).

3. Formule de Taylor avec reste de Lagrange.
Le théorème suivant est dû au mathématicien Lagrange.

Théorème 2.12 Soit n ∈ IN . Soient f une fonction dé�nie sur I, n + 1
fois dérivable sur I et a ∈ I. Alors on a :

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2!

(x− a)2 + · · ·+ f (n)(a)
n!

(x− a)n +Rn(x),
(2.9)

où

Rn(x) =
f (n+1)(a+ θx(x− a))

(n+ 1)!
(x− a)n+1, θx ∈]0, 1[.

Remarque 2.13 Le théorème précédent est une généralisation de la formule
des accroissements �nis. En e�et, dans le cas où n = 0, on retrouve le
théorème des accroissements �nis. Rappelons que dans la précédente section,
on a exprimé le théorème des accroissements �nis sous la forme suivante :
étant donné x > a

f(x)− f(a) = f ′(c)(x− a), c ∈]a, x[.

Dire que c ∈]a, x[, c'est dire qu'il existe θ ∈]0, 1[ tel que c = θx+ (1− θ)a =
a+ θ(x− a). On retrouve ainsi la formule (2.9) dans le cas n = 0.

2.2 Interpolation de Lagrange

2.2.1 Existence et unicité du polynôme de Lagrange

On considère une fonction f dé�nie sur [a, b] à valeurs réelles et (xi) n + 1
points de [a, b] tels que a ≤ x0 < x1 < · · · < xn−1 < xn ≤ b. On cherche un
polyôme de degré minimal satisfaisant les conditions

P (xi) = f(xi), ∀ i = 0, · · · , n. (2.10)

Théorème 2.14 Il existe un unique polynôme de degré inférieur ou égal à
n satisfaisant les conditions (2.10).

Preuve a. Existence du polynôme d'interpolation.
Contruisons des polynômes li i = 0, · · · , n tels que

li(xj) = δi,j.
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On appelle li le ième polynôme élémentaire de Lagrange. Pour tout j 6= i,
xj est racine de li, donc d'après le théorème 2.6, on a

li(x) = C.

n∏
j=0,j 6=i

(x− xj).

La constante C est déterminée par la condition l(xi) = 1, et on obtient

immédiatement C =
1∏n

j=0,j 6=i(xi − xj)
. Par construction, le polynôme li

recherché est donné par

li(x) =
∏

j=0,j 6=i

x− xj
xi − xj

.

Le polynôme dé�ni par

P (x) =
n∑
i=0

f(xi)li(x)

satisfait les conditions (2.10).

b. Unicité du polynôme d'interpolation
Supposons qu'il existe P et Q satisfaisant 2.10. Alors le polynôme P − Q
admet n + 1 racines et son degré est inférieur ou égal à n. On déduit de la
remarque 2.7 qu'il est identiquement nul. Donc P = Q.

Une autre approche possible pour déterminer le polynôme interpolant f est
de chercher P sous la forme P (x) = a0 + a1x + · · · + anx

n, ai à déterminer
de telle sorte que (2.10) soit véri�ée. Le système linéaire obtenue est de la
forme

AnX = bn,

où bn = (f(x0), · · · , f(xn))t, X = (ai)
t
i=0,··· ,n et (An)i,j = xj−1i−1 , 1 ≤ i, j ≤

n+ 1.

Proposition 2.15 On a l'égalité

detAn =
∏

0≤j<i≤n

(xi − xj).

An est inversible et la solution du système AnX = bn existe et est unique.
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Preuve
E�ectuons un raisonnement par réccurence sur n. Le résultat est vrai pour
n = 1. En e�et, dans ce cas,

detA1 = x1 − x0 et
∏

0≤j<i≤1

(xi − xj) = x1 − x0.

Supposons le résultat vrai au rang n− 1 (n ≥ 2) et montrons qu'alors il est
vrai au rang n. Remplaçons xn par x dans l'expression de An (on notera par
An(x) la matrice ainsi obtenue) et considérons l'application x 7→ detAn(x)
notée ψ. Remarquons que ψ est un polynôme de degré inférieur ou égal à n
en l'indéterminée x et que, d'après les propriétés du déterminant, ψ s'annule
en x0, ...,xn−1. On a donc

ψ(x) = C

n−1∏
j=0

(x− xj).

Déterminons C, le coe�cient du monôme de plus haut degré de ψ. La con-
stante C est obtenue en développant le déterminant de An par rapport à la
dernière ligne et précisément, on a

C = detAn−1

Mais par hypothèse de récurrence, on a

C =
∏

0≤j<i≤n−1

(xi − xj).

Finalement, on obtient

detAn =
∏

0≤j<i≤n−1

(xi − xj).
n−1∏
j=0

(xn − xj) =
∏

0≤j<i≤n

(xi − xj).

Proposition 2.16 Le système (li) i = 0, · · · , n constitue une base de IRn[X].

Preuve La dimension de IRn[X] est égale à n + 1. Pour montrer que le
système constitue une base, il su�t de montrer qu'il est libre. Soit un n+ 1-
uplet (a0, a1, · · · , an) tel que

n∑
i=0

aili(x) = 0. (2.11)

Posons x = xk, k ∈ {0, · · · , n} dans (2.11). On obtient alors ak = 0. Le
système est donc libre et il constitue une base de IRn[X].
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Exemple de calcul du polynôme d'interpolation
Considérons la fonction

f(x) =
2x

x+ 1
.

On veut interpoler cette fonction aux points x0 = 0, x1 = 1 et x2 = 2. On a
f(x0) = 1, f(x1) = 1 et f(2) = 4

3
. Les polynômes élémentaires de Lagrange

sont donnés par

l0(x) =
(x− 1)(x− 2)

2
,

l1(x) = −x(x − 2) et l2(x) = x(x−1)
2

. D'après le théorème 2.14, le polynôme
P interpolant f est donné par

P (x) = l0(x) + l1(x) +
4

3
l2(x).

2.2.2 Estimation de l'erreur dans le cas où f est de classe Cn+1

On fait ici l'hypothèse supplémentaire que f est de classe Cn+1 et on se
propose de déterminer une expression de l'erreur f(x)− Pn(x). On utilisera
une partie des résultats obtenus dans le lemme suivant, dont la démonstration
repose sur le théorème de Rolle :

Lemme 2.17 Soit n ∈ IN∗. Soit f une fonction de classe Cn sur [a, b]
admettant n+ 1 racines distinctes dans [a, b]. Alors il existe ρ ∈]a, b[ tel que

f (n)(ρ) = 0.

Preuve Le résultat est vrai pour n = 1 d'après le théorème de Rolle.
Supposons le résultat vrai pour n ≥ 1 et montrons qu'il est alors vrai au
rang n + 1. Soient x1, ..., xn+2 les n + 2 racines simples de f . Appliquons
le théorème de Rolle sur chaque intervalle de la forme [xi, xi+1], pour i =
1, · · · , n+ 1. Il existe ρi ∈]xi, xi+1[ tel que

f ′(ρi) = 0.

La fonction f ′ admet donc n+1 racines distinctes et par hypothèse de récur-
rence, il existe ρ ∈]a, b[ tel que

(f ′)
(n)

(ρ) = 0.

Le résultat est donc établi.
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Dé�nition 2.18 On dit qu'une fonction f de classe Cn sur IR admet x0
comme racine de multiplicité n si

f(x0) = f ′(x0) = · · · = f (n−1)(x0) = 0.

En particulier, on dit que x0 est une racine double de f si

f(x0) = f ′(x0) = 0.

On peut déduire du lemme 2.17 le lemme suivant :

Lemme 2.19 Soit f une fonction de classe C2n+2 sur [a, b] admettant n+ 1
racines doubles distinctes dans [a, b] et une racine simple. Alors il existe
ρ ∈]a, b[ tel que

f (2n+2)(ρ) = 0.

Preuve
Soient x1, ..., xn+1 les n+ 1 racines doubles de f et y l'unique racine simple.
On peut supposer sans perdre en généralités que x1 < x2 < · · · < xn+1 < y.
La fonction f ′ admet pour racines simples x1 < x2 < · · · < xn+1. D'autre
part, en appliquant le théorème de Rolle sur les intervalles [xi, xi+1] pour
i = 1, · · · , n et sur [xn+1, y], on obtient l'existence de n + 1 racines simple
de f ′, distinctes de x1, ..., xn+1. La fonction f ′ admet donc 2n + 2 racines
simples, et d'après le lemme 2.17, on déduit qu'il existe ρ ∈]a, b[ tel que

f ′
(2n+1)

(ρ) = 0,

ce qui achève la preuve du lemme 2.19.

Théorème 2.20 Soit f ∈ Cn+1([a, b]). Pour tout x ∈ [a, b], il existe ρx ∈
]a, b[ tel que

f(x)− Pn(x) =
f (n+1)(ρx)

(n+ 1)!

n∏
i=0

(x− xi). (2.12)

Preuve
Remarquons que si x = x0, · · · , xn, la conclusion du théorème 2.20 est vraie.
Pour x distinct de x0, · · · , xn, on pose

Kx =
f(x)− Pn(x)∏n

i=0(x− xi)

On considère la fonction auxiliaire, pour t ∈ [a, b]

φx := f(t)− Pn(t)−Kx

n∏
i=0

(t− xi).
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Remarquons que φx admet pour racines x0, · · · , xn et que compte tenu de la
dé�nition de Kx, on a φx(x) = 0. La fonction φx admet donc n + 2 racines
simples distinctes, et de plus, elle est de classe Cn+1. D'après le lemme 2.17,
on déduit qu'il existe ρx ∈]a, b[ tel que

φ(n+1)
x (ρx) = 0.

Or, comme Pn est de degré inférieur ou égal à n, on a P
(n+1)
n = 0. Par

ailleurs,
∏n

i=0(t − xi) est un polynôme de degré n + 1 dont la dérivée n + 1
ième est égale à (n+ 1)!. On obtient �nalement

φ(n+1)
x (ρx) = f (n+1)(ρx)−Kx(n+ 1)! = 0,

soit
f(x)− Pn(x)∏n

i=0(x− xi)
=
f (n+1)(ρx)

(n+ 1)!
.

On en déduit (2.12).

Du théorème 2.20, on déduit immédiatement le corollaire

Corollaire 2.21 Soient f ∈ Cn+1([a, b]) et Pn le polynôme qui interpole f
aux points x0, · · · , xn. On a l'estimation

|f(x)− Pn(x)| ≤
maxx∈[a,b] |f (n+1)(x)|

(n+ 1)!

n∏
i=0

|x− xi|, ∀x ∈ [a, b]. (2.13)

Preuve
On a

|f (n+1)(ρx)| ≤ max
x∈[a,b]

|f (n+1)(x)|.

L'inégalité (2.13) découle alors de l'inégalité précédente et de (2.12).

3. Applications : calcul d'une valeur approchée de ln 9.2 connaissant une
valeur approchée de ln 9 et ln 9.5. On donne ln 9 = 2.19722 et ln 9.5 =
2.25129. Une valeur approchée de ln 9.2 est donnée par P1(9.2) où P1 est
le polynôme qui interpole f dé�nie par f(x) = ln x aux points x0 = 9 et
x1 = 9.5.
Le polynôme P1 est donné par

P1(x) = 0.10814(x− 9) + 2.19722.
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et une valeur approchée de ln 9.2 est donnée par 2.21884..
Déterminons une majoration de l'erreur ln 9.2−P1(9.2). D'après le corollaire
2.21, on déduit que

| ln 9.2− P1(9.2)| ≤
maxx∈[9;9.5] |f ′′(x)|

2!
(9.2− 9)(9.5− 9.2)

Or, maxx∈[9;9.5] |f ′′(x)| = maxx∈[9;9.5]
1
x2

= 1
81
, d'où on obtient

| ln 9.2− P1(9.2)| ≤
maxx∈[9;9.5] |f ′′(x)|

2!
(9.2− 9)(9.5− 9.2) = 3.7037.10−4.

2.3 Di�érences divisées

2.3.1 Polynôme de Newton

La méthode de Lagrange comporte divers inconvénients. Par exemple, si
on introduit un point d'interpolation supplémentaire, il est nécessaire de
recalculer tous les polynômes élémentaires de Lagrange a�n de déterminer le
polynôme d'interpolation de f .
L'objectif dans cette partie est de déterminer les polynômes Pn par récurrence
sur n. Soit n ≥ 1. Supposons que Pn−1, le polynôme qui interpole f aux
points x0, x1, · · · , xn−1 soit déterminé. On cherche donc Pn sous la forme

Pn(x) = Pn−1(x) + gn(x),

gn polynôme à déterminer. Puisque Pn(xi) = Pn−1(xi) pour i = 0, · · · , n−1,
on a gn(xi) = 0 pour tout i = 0, · · · , n− 1. Donc on a

gn(x) = an

n−1∏
i=0

(x− xi).

Le coe�cient an se note f [x0, · · · , xn] : c'est la n-ième di�érence divisée de
f aux points x0, · · · , xn. C'est le coe�cient du monôme de plus haut degré
de Pn. Observons que

an =
Pn(xn)− Pn−1(xn)∏n−1

i=0 (xn − xi)
.

L'objectif est de calculer an en e�ectuant une récurrence sur n. Par dé�nition,
on pose

f [x0] := f(x0).

Calculons gn dans le cas n = 1. On a

P1(x) = P0(x) + g0(x),
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avec P0(x) = f(x0) et

P1(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0).

On en déduit que g0(x) = f(x1)−f(x0)
x1−x0 (x− x0), et on pose

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
. (2.14)

A�n de déterminer f [x0, · · · , xn] pour n ≥ 2 quelconque, établissons le lemme
d'Aitken.

Lemme 2.22 Soit P le polynôme qui interpole f aux points x0, · · · , xn et Q
le polynôme qui interpole f aux points x1, · · · , xn+1. Alors le polynôme qui
interpole f aux points x0, · · · , xn+1 est donné par

R(x) =
(xn+1 − x)P (x)− (x0 − x)Q(x)

xn+1 − x0
. (2.15)

Preuve En e�et, on a

R(x0) = P (x0) = f(x0),

et R(xn+1) = Q(xn+1) = f(xn+1). Pour i 6= 0, n+ 1, on a

R(xi) =
(xn+1 − xi)P (xi)− (x0 − xi)Q(xi)

xn+1 − x0
=

((xn+1 − xi)− (x0 − xi))f(xi)

xn+1 − x0
= f(xi).

On déduit du lemme 2.22 la proposition suivante :

Proposition 2.23 On a f [x0] = f(x0) et pour n ≥ 1

f [x0, · · · , xn] =
f [x1, · · · , xn]− f [x0, · · · , xn−1]

xn − x0
(2.16)

Preuve Soit n ≥ 1. Appliquons le lemme d'Aitken en considérant les
polynômes P et Q qui interpolent f respectivement aux points x0, · · · , xn−1
et x1, · · · , xn. Le coe�cient du monôme de plus haut degré dans R est
donné par f [x0, · · · , xn], celui de P par f [x0, x1, · · · , xn−1] et celui de Q par
f [x1, x2, · · · , xn]. D'après (2.15), on déduit que le coe�cient du monôme de
plus haut degré dans R est égal à

f [x1, · · · , xn]− f [x0, · · · , xn−1]
xn − x0

.

Ceci achève la preuve de la proposition 2.23.

On déduit immédiatement de la proposition 2.23 le théorème :

18



Théorème 2.24 Le polynome Pn qui interpole f aux points (xi) est donné
par

Pn(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, · · · , xn]
n−1∏
i=0

(x− xi).

où f [x0, · · · , xn] est donnée par (2.16).

À titre de comparaison avec la méthode de Lagrange, reprenons l'exemple de
calcul du polynôme d'interpolation donné à la sous-section précédente. On
a x0 = 0, x1 = 1 et x2 = 2 et f(x0) = 1, f(x1) = 1 et f(2) = 4

3
. Appliquant

la proposition 2.23, on obtient

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
= 0

et

f [x1, x2] =
f(x2)− f(x1)

x2 − x1
=

1

3

puis

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

1

6
.

D'après le théorème 2.24, on en déduit l'expression suivante de P2 :

P2(x) = f [x0]+f [x0, x1](x−x0)+f [x0, x1, x2](x−x0)(x−x1) = 1+
x(x− 1)

6
.

2.3.2 Propriétés des di�érences divisées

Proposition 2.25 Soit σ une permutation de {0, · · · , n}. Alors on a

f [xσ(0), · · · , xσ(n)] = f [x0, · · · , xn]. (2.17)

Preuve
En e�et, le polynôme Pn qui interpole f aux points x0, x1, · · · , xn est égal au
polynôme Q qui interpole f aux points xσ(0), · · · , xσ(n). Or, le coe�cient du
monôme de plus haut degré de Pn vaut f [x0, · · · , xn] et celui de Q est égal à
f [xσ(0), · · · , xσ(n)] d'où (2.17).

Etablissons la proposition

Proposition 2.26 Soient p ∈ IRn[X] et (xi)i∈{0,··· ,n1} n + 2 points distincts
de [a, b] tels que a ≤ x0 < x1 < · · · < xn < xn+1 ≤ b. Alors p[x0, · · · , xn] est
indépendant du choix des points d'interpolation x0, · · · , xn.
De plus, on a

p[x0, · · · , xn+1] = 0, ∀ p ∈ IRn[X].
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Preuve
En e�et, soit an le coe�cient du monôme de plus haut degré de p. Alors
d'après le théorème 2.24, quelque soit (x0, · · · , xn) ∈ IRn+1, n + 1 points
distincts, on a

p[x0, · · · , xn] = an.

D'autre part, d'après la proposition 2.23 et ce qui précède, on a

p[x0, · · · , xn+1] =
p[x1, · · · , xn+1]− p[x0, · · · , xn]

xn+1 − x0
=

an − an
xn+1 − x0

= 0,

ce qui achève la preuve de la proposition 2.26.

On pose ∏
i

(x0, · · · , xn) =
n∏

j=0,j 6=i

(xi − xj), 0 ≤ i ≤ n.

On peut montrer par récurrence la proposition suivante :

Proposition 2.27 Soit n ∈ IN∗. On a l'égalité

f [x0, · · · , xn] =
n∑
i=0

f(xi)∏
i(x0, · · · , xn)

.

Preuve On raisonne par récurrence sur n.
Si n = 1, on a f [x0, x1] = f(x1)−f(x0)

x1−x0 et

1∑
i=0

f(xi)∏
i(x0, x1)

=
f(x0)

(x0 − x1)
+

f(x1)

(x1 − x0)
=
f(x1)− f(x0)

x1 − x0
.

Le résultat est donc vrai dans ce cas. Supposons le résultat vrai à l'ordre n
et montrons qu'il est vrai à l'ordre n+ 1.
On a

f [x0, · · · , xn, xn+1] =
f [x1, · · · , xn, xn+1]− f [x0, · · · , xn]

xn+1 − x0
.

Par hypothèse de récurrence, on a

f [x0, · · · , xn, xn+1] =

n+1∑
i=1

f(xi)∏
i(x1, · · · , xn+1)

−
n∑
i=0

f(xi)∏
i(x0, · · · , xn)

xn+1 − x0
.

Par dé�nition, on a

(xi − x0)
∏
i

(x1, · · · , xn+1) =
∏
i

(x0, · · · , xn+1), ∀ i 6= 0
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et
(xi − xn+1)

∏
i

(x0, · · · , xn) =
∏
i

(x0, · · · , xn+1), ∀ i 6= n+ 1.

Or,

n+1∑
i=1

f(xi)∏
i(x1, · · · , xn+1)

−
n∑
i=0

f(xi)∏
i(x0, · · · , xn)

xn+1−x0

= f(xn+1)∏
n+1(x1,··· ,xn+1)

+
n∑
i=1

(
f(xi)∏

i(x1, · · · , xn+1)
− f(xi)∏

i(x0, · · · , xn)

)
− f(x0)∏

0(x1, · · · , xn+1)
.

De plus,

n∑
i=1

(
f(xi)∏

i(x1, · · · , xn+1)
)− f(xi)∏

i(x0, · · · , xn)

)
=

n∑
i=1

f(xi)(xi − x0 − xi + xn+1)∏
i(x0, · · · , xn+1)

=
n∑
i=1

f(xi)(xn+1 − x0)∏
i(x0, · · · , xn+1)

.

On en déduit que le résultat est vrai au rang n + 1 ce qui achève la preuve
de la proposition 2.27.

On pose w(x0, · · · , xn+1) =
∑n+1

i=0
1

|
∏
i(x0,··· ,xn+1)| . De la proposition 2.27, on

peut déduire la proposition

Proposition 2.28 Soit f ∈ C0([a, b]). Quelque soit p ∈ IRn[X], on a

‖f − p‖∞ ≥
|f [x0, · · · , xn+1]|
w(x0, · · · , xn+1)

,

où ‖f‖∞ = maxx∈[a,b] |f(x)|.

Preuve D'après les propositions 2.26 et 2.27, on déduit l'égalité

f [x0, x1, · · · , xn, xn+1]

= f [x0, x1, · · · , xn, xn+1]− p[x0, x1, · · · , xn, xn+1] =
n+1∑
i=0

f(xi)− p(xi)∏
i(x0, · · · , xn+1)

.

Par inégalité triangulaire, on en déduit aussitôt l'inégalité

|f [x0, x1, · · · , xn, xn+1]| ≤
n+1∑
i=0

| f(xi)− p(xi)∏
i(x0, · · · , xn+1)

| ≤ ‖f−p‖∞
n+1∑
i=0

| 1∏
i(x0, · · · , xn+1)

|,

ce qui achève la preuve de la proposition 2.28.
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2.3.3 Détermination de l'erreur

On pose en(x) = f(x)− Pn(x).

Proposition 2.29 On a pour tout x ∈ [a, b],

en(x) = f [x0, x1, · · · , xn, x]
n∏
i=0

(x− xi).

Preuve
Soit x̄ di�érent de x0, x1, · · · , xn. Soit Pn le polynôme qui interpole f aux
points x0, x1, · · · , xn. Le polynôme P̄ qui interpole f aux points x0, x1, · · · , xn, x̄
est donné par

P̄ (x) = Pn(x) + f [x0, x1, · · · , xn, x̄]
n∏
i=0

(x− xi).

Au point x = x̄, on a

P̄ (x̄) = f(x̄) = Pn(x̄) + f [x0, x1, · · · , xn, x̄]
n∏
i=0

(x̄− xi).

On en déduit que

en(x̄) := f(x̄)− Pn(x̄) = f [x0, x1, · · · , xn, x̄]
n∏
i=0

(x̄− xi),

ce qui achève la preuve de la proposition 2.29.

Du théorème 2.20 et de la proposition 2.29, on déduit immédiatement le
théorème

Théorème 2.30 Soient f ∈ Cn+1([a, b]) et a ≤ x0 < x1 < · · · < xn ≤ b.
Pour tout x ∈ [a, b], il existe ρx ∈]a, b[ tel que

f [x0, x1, · · · , xn, x] =
f (n+1)(ρx)

(n+ 1)!
. (2.18)

Preuve On a établi deux expressions de l'erreur |f(x)−Pn(x)| (voir théorème
2.20 et proposition 2.29). En comparant ces deux expressions, on déduit
(2.18).
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2.4 Interpolation de Hermite

2.4.1 Existence et unicité du polynôme de Hermite

Soient f une fonction dérivable et xi ∈ [a, b], i ∈ {0, · · · , n} n + 1 points
distincts. Pour i ∈ {0, · · · , n}, on pose yi = f(xi) et zi = f ′(xi) et on
cherche Hn un polynôme de degré minimal dé�ni par les relations{

Hn(xi) = f(xi), i ∈ {0, · · · , n}
H ′n(xi) = f ′(xi) i ∈ {0, · · · , n}. (2.19)

Théorème 2.31 Il existe un unique polynôme de degré inférieur ou égal à
2n+ 1 satisfaisant (2.19). Il est donné par

Hn(x) =
n∑
i=0

Ai(x)yi +
n∑
i=0

Bi(x)zi, (2.20)

où

Ai(x) = l2i (x) (1− 2l′i(xi)(x− xi)) et Bi(x) = l2i (x)(x− xi).

Preuve
Existence de Hn. On va chercher Hn sous la forme

Hn(x) =
n∑
i=0

Ai(x)yi +
n∑
i=0

Bi(x)zi,

Ai et Bi à déterminer. Déterminons les Ai. Si on pose{
Ai(xi) = 1, Ai(xj) = 0, j 6= i,
A′i(xj) = 0 ∀ j ∈ {0, · · · , n},

et {
Bi(xj) = 0, ∀ j ∈ {0, · · · , n},
B′i(xj) = 0 i 6= j, B′i(xi) = 1,

alors on a

Hn(xi) = yi, et H ′n(xi) = zi ∀ i ∈ {0, · · · , n}.

Par conséquent, la fonction Ai admet n−1 racines doubles (xj)j 6=i et satisfait
les deux conditions Ai(xi) = 1 et A′i(xi) = 0. Par conséquent, on cherche
Ai sous la forme Ai(x) =

∏
j 6=i(x − xj)

2(ax + b), le terme ax + b étant à
déterminer de telle sorte que

Ai(xi) = 1 et A′i(xi) = 0. (2.21)
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Remarquons que Ai est de degré 2n + 1 et que l'on peut exprimer cette
fonction à l'aide des polynômes élémentaires de Lagrange. Finalement, on
cherchera Ai sous la forme

Ai(x) := l2i (x)(ax+ b).

Les deux conditions (2.21) sont satisfaites si et seulement si a et b satisfont
le système linéaire {

axi + b = 1,
2l′i(xi)(axi + b) + a = 0.

On obtient après résolution du système a = −2l′i(xi) et b = 1 + 2l′i(xi)xi,
d'où

Ai(x) = l2i (x)(1− 2l′i(xi)(x− xi)).

On procède de même avec Bi.
On obtient {

Bi(xj) = 0, ∀ j,
B′i(xj) = 0 i 6= j, B′i(xi) = 1.

Bi admet xj j 6= i comme racines doubles et xi comme racine simple. On en
déduit que

Bi(x) = C.
n∏

j=0,j 6=i

(x− xj)2(x− xi),

que l'on peut aussi écrire sous la forme

Bi(x) = C̃.li(x)2(x− xi).

On a B′i(xi) = C̃.1 = 1. Le polynôme Bi est également de degré 2n + 1, et
compte tenu de (2.20), on en déduit que Hn est de degré inférieur ou égal à
2n+ 1. On a donc établi l'existence de Hn.

Unicité de Hn. On suppose qu'il existe deux polynômes Hn et Gn de degré
inférieur ou égal à 2n + 1 satisfaisant (2.19). Alors, la di�érence Hn − Gn

admet n + 1 racines doubles donc si Hn − Gn est non nul, son degré est de
2n + 2. Contradiction. Donc Hn = Gn. La preuve du théorème 2.31 est
achevée.

2.4.2 Estimation de l'erreur

Pour x ∈ [a, b], on pose E(x) := f(x)−Hn(x).
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Théorème 2.32 Soit f une fonction dé�nie sur [a, b] de classe C2n+2. Pour
tout x ∈ [a, b], il existe ρx ∈ [a, b] tel que

E(x) =
f (2n+2)(ρx)

(2n+ 2)!

n∏
i=0

(x− xi)2.

Preuve
On introduit pour x ∈ [a, b] �xé, la fonction

φx(y) = f(y)−Hn(y)− (f(x)−Hn(x))
n∏
i=0

(y − xi)2

(x− xi)2
.

Remarquons que la fonction φx admet n + 1 racines doubles x0, x1, · · · , xn
et une racine simple, x. On applique alors le lemme 2.19. On déduit qu'il
existe ρx ∈]a, b[ tel que

φ(2n+2)
x (ρx) = 0.

Or, comme H(2n+2)
n (x) = 0 pour tout x et la dérivée 2n + 2 ième de y 7→

(y − xi)2 vaut (2n+ 2)!, on obtient

φ(2n+2)
x (y) = f (2n+2)(y)− (f(x)−Hn(x))

(2n+ 2)!∏n
i=0(x− xi)2

On en déduit immédiatement le résultat cherché.

2.5 Minimisation de l'erreur

Dans la suite, on note par En l'ensemble des polynômes unitaires de degré n.
On suppose que f ∈ Cn+1([a, b]). D'après le théorème 2.20, l'erreur dépend
de deux termes :

max
x∈[a,b]

|fn+1(x)|,

et

max
x∈[a,b]

|
n∏
i=0

(x− xi)|.

La question est de déterminer comment choisir les (xi) de telle sorte que
maxx∈[a,b] |

∏n
i=0(x− xi)| soit minimal ?

Nous allons montrer dans cette sous-section qu'il existe un polynôme unitaire
q scindé de degré n+ 1 tel que :

max
x∈[a,b]

|q(x)| ≤ max
x∈[a,b]

|v(x)| ∀ v ∈ En+1
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2.5.1 Polynôme de Tchebychev

Pour x ∈ [−1, 1] et n ∈ IN , on pose

Tn(x) = cos(narcos(x)).

Proposition 2.33 La fonction Tn est un polynôme de degré n. De plus,
pour n ≥ 1, le coe�cient du monÃ�me de plus haut degré de Tn est égal à
2n−1.
Pour tout x ∈ [−1, 1] et n ∈ IN∗, on a la relation

Tn+1(x) = 2xTn(x)− Tn−1(x). (2.22)

Preuve
On a pour tout θ ∈ IR

cos((n+ 1)θ) = cosnθ cos θ − sinnθ sin θ

et
cos((n− 1)θ) = cosnθ cos θ + sinnθ sin θ

donc
cos((n+ 1)θ) + cos((n− 1)θ) = 2 cosnθ cos θ

et en faisant le choix θ = arcosx, on obtient (2.22).
Remarquons que T0(x) = 1 et T1(x) = x. En e�ectuant un raisonnement par
récurrence, et en utilisant (2.22), on déduit le résultat demandé. En e�et,
le résultat est vrai pour n = 0 et n = 1. Supposons le résultat vrai pour
k ∈ {0, · · · , n}. Alors d'après (2.22), Tn+1 est un polynôme de degré n + 1
et le coe�cient du monôme de plus haut degré est égal à 2.2n−1 = 2n.

Proposition 2.34 Pour n ≥ 1, le polynôme Tn admet n racines simples

xk = cos(
2k − 1

2n
π), k = 1, · · · , n.

De plus, Tn atteint ses extremums dans l'intervalle ]− 1, 1[ aux n− 1 points
x′k = cos( k

n
π) k = 1, · · · , n − 1. En ces points, on a Tn(x′k) = (−1)k. De

plus, en x′0 := −1 et x′n = 1, on a

Tn(x′0) = (−1)n et Tn(x′n) = 1.

PreuveOn a Tn(x) = 0 si et seulement si cos(narcos(x)) = 0, soit narcos(x) =
π
2

+ kπ ou encore

x = cos(
π

2n
+
kπ

n
), k ∈ Z.
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Tn est degré n, il admet au plus n racines notées xk. On en déduit que

xk = cos(
(2k − 1)π

2n
), k = 1, · · · , n.

On a pour tout x ∈]− 1, 1[

T ′n(x) =
n√

1− x2
sin(narcos(x)).

Donc T ′n(x) = 0 si et seulement si

narcos(x) = kπ, k ∈ Z.

La racines de T ′n sont données par

x′k = cos(
kπ

n
), k = 1, · · · , n− 1.

Comme la fonction T ′n change de signe au voisinage de x′k, on en déduit que
x′k k = 1, · · · , n− 1 sont des extremums de Tn. En ces points, on a

Tn(x′k) = cos(kπ) = (−1)k.

De plus, Tn(−1) = cos(nπ) = (−1)n et Tn(1) = cos(0) = 1.

2.5.2 Minimisation de maxx∈[a,b]
∏n

i=0 |x− xi|

L'objectif est de minimiser maxx∈[a,b]
∏n

i=0 |x − xi| en choisissant les xi au
mieux dans [a, b].

Dans la suite, on pose T̄n =
Tn

2n−1
.

Théorème 2.35 Soit p ∈ En.
On a l'inégalité

1

2n−1
= max
−1≤x≤1

|T̄n(x)| ≤ max
−1≤x≤1

|p(x)|.

Preuve
On suppose qu'il existe P ∈ En tel que

max
−1≤x≤1

|P (x)| < max
−1≤x≤1

|T̄n(x)| = 1

2n−1
. (2.23)

Posons r = T̄n − P . Le degré de r est inférieur ou égal à n − 1 et r 6= 0.
D'autre part, d'après la proposition 2.34, on a

r(x′k) = T̄n(x′k)− P (x′k) =
(−1)k

2n−1
− P (x′k), k = 0, · · · , n.
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Comme max−1≤x≤1 |P (x)| < 1

2n−1
, le signe de r(x′k) dépend du signe de

(−1)k

2n−1
, il est donc positif si k est pair et négatif si k est impair. Comme

r est continue, on déduit du théorème des valeurs intermédiaires appliquée
entre x′k et x

′
k+1 (k = 0, · · · , n) que r admet au moins n zéros. Or, comme le

degré de r est inférieur ou égal à n− 1, on a r = 0. Donc T̄n − P = 0 ce qui
contredit (2.23).

On déduit de cette étude que pour minimiser maxx∈[a,b] |
∏n

i=0(x − xi)|, il
faut choisir pour xi les racines de Tn+1. Ainsi, on a établi le théorème

Théorème 2.36 On suppose que a = −1, b = 1 et que les points d'interpolation
xi sont les racines de Tn+1. Alors, pour tout x ∈ [−1, 1], on a l'estimation
suivante :

|f(x)− Pn(x)| ≤ 1

2n
max
x∈[−1,1]

|f
n+1(x)

(n+ 1)!
|.

De plus, ce choix des points d'interpolation est le meilleur possible au sens
où pour tout (yi)(i∈{0,··· ,n}) yi ∈ [−1, 1] (yi distincts deux-à-deux), on a

1

2n
≤ max

y∈[−1,1]
|
n∏
i=0

(y − yi)|.

Il faut à présent établir un résultat analogue pour un intervalle quelconque
[a, b]. Soit φ la bijection a�ne dé�nie sur [−1, 1] dont l'image est [a, b] avec
φ(−1) = a et φ(1) = b. On a

φ(x) =
b− a

2
x+

b+ a

2
. (2.24)

On pose
ui := φ(xi) (2.25)

pour i = 0, · · · , n (xi dé�nis dans la proposition 2.34) et pour x ∈ [−1, 1],
u = φ(x). Le théorème suivant généralise le théorème 2.36 au cas d'un
intervalle quelconque :

Théorème 2.37 Soient x ∈ [a, b] et Pn le polynôme qui interpole f aux
points (ui), pour i = 0, · · · , n. On a alors pour x ∈ [a, b]

|f(x)− Pn(x)| ≤ (b− a)n+1

(n+ 1)!22n+1
max
x∈[a,b]

|f (n+1)(x)|.

Ce choix est le meilleur possible au sens pour tout (yi)(i∈{0,··· ,n}) yi ∈ [a, b],
on a

(b− a)n+1

22n+1
≤ max

y∈[a,b]
|
n∏
i=0

(y − yi)|.
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A�n de prouver le théorème 2.37, établissons le théorème

Théorème 2.38 Soit p un polynôme unitaire de degré n, scindé sur [a, b].

Soit P̃ dé�ni par P̃ (u) =
n∏
i=0

(u− ui), u ∈ [a, b] et (ui) dé�nies dans (2.25).

On a l'inégalité

max
a≤x≤b

|P̃ (x)| = (b− a)n+1

22n+1
≤ max

a≤x≤b
|p(x)|.

Preuve Soient (zi) les racines simples de p dans [a, b] et (yi) dé�nie par
yi = φ−1(zi), i = 1, · · · , n. Pour tout u ∈ [a, b], il existe un unique x ∈ [−1, 1]
tel que

|P̃ (u)| = |
n∏
i=0

(u− ui)| =
n∏
i=0

|φ(x)− φ(xi)| =
(b− a)n+1

2n+1
|
n∏
i=0

(x− xi)|.

On a alors

max
u∈[a,b]

|P̃ (u)| = (b− a)n+1

2n+1
max
x∈[−1,1]

|
n∏
i=0

(x− xi)| =
(b− a)n+1

2n+1
.

1

2n
=

(b− a)n+1

22n+1
,

(2.26)
et

max
u∈[a,b]

|p(u)| = (b− a)n+1

2n+1
max
x∈[−1,1]

|
n∏
i=0

(x− yi)|.

On déduit alors du théorème 2.35 l'inégalité

max
u∈[a,b]

|P̃ (u)| = (b− a)n+1

22n+1
≤ max

u∈[a,b]
|p(u)|. (2.27)

Preuve du théorème 2.37
La preuve du théorème 2.37 découle immédiatement du théorème 2.38 (voir
(2.26) et (2.27)).

Remarque 2.39 Considérons la fonction f(x) =
1

1 + x6
sur [−4; 4]. Posons

xi = −4 + ih, avec h = 8
N
, i = 0, · · · , N . Le polynôme qui interpole la

fonction f aux points équidistants (xi) approche f de manière très mauvaise
au voisinage de −4 et 4. Ce phénomène est appelé le phénomène de Runge.
Un moyen d'y remédier est d'utiliser pour points d'interpolation les images
par φ(t) := 4t des zéros du polynôme de Tchebychev TN+1.
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2.6 Introduction à l'approximation uniforme par des

polynômes

On note par IRn[X] l'anneau des polynômes de degré inférieur ou égal à n.
Soit f : [a, b]→ IR une fonction continue sur [a, b]. On pose

‖f‖∞ = max
x∈[a,b]

|f(x)|.

Dans cette section, on étudie le problème de l'approximation uniforme de f .
On cherche un polynôme P0 ∈ IRn[X] tel que

‖f − P0‖∞ = inf
p∈IRn[X]

‖f − p‖∞. (2.28)

On va montrer qu'un tel polynôme existe et qu'il est unique.

2.6.1 Existence et unicité du polynôme de meilleure approxima-
tion

Le théorème suivant donne la réponse à la question posée précédemment.

Théorème 2.40 Etant donné f ∈ C0([a, b]), il existe un unique polynôme
P0 satisfaisant (2.28).

Preuve
Existence Observons que si f ∈ IRn[X], on a P0 = f . Supposons que
f /∈ IRn[X]. Considérons l'application φ dé�nie sur IRn[X] à valeurs dans
IR+ dé�nie par ψ(p) = ‖p− f‖∞. La fonction φ est continue sur IRn[X]. En
e�et, soit p0 ∈ IRn[X]. On a par inégalité triangulaire

|φ(p)− φ(p0)|∞ ≤ ‖p− p0‖∞.

Donc pour tout ε > 0, il existe η = ε, tel que ‖p − p0‖∞ < η implique
|φ(p)− φ(p0)|∞ < ε.
D'autre part, φ(p) tend vers +∞ quand ‖p‖∞ tend vers +∞ puisque, par
inégalité triangulaire

φ(p) ≥ ‖p‖∞ − ‖f‖∞.
(On dit alors que φ est coercive.)
Donc, il existe R > 0 tel que

φ(p) ≥ φ(p0) ∀ p tel que ‖p‖ ≥ R.

On a donc
inf

p∈IRn[X]
‖f − p‖∞ = inf

p∈B(0,R)
‖f − p‖∞,
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où B(0, R) représente la boule fermée de centre O et de rayon R incluse dans
(IRn[X], ‖.‖∞).
Or, la boule B(0, R) est un fermé borné de IRn[X], donc c'est un sous-
ensemble compact de IRn[X]. De plus, il s'agit d'un sous-ensemble connexe
de IRn[X]. En e�et, la boule est connexe par arcs (on peut relier deux points
quelconques de la boule par un segment), donc connexe.
L'image d'un sous-ensemble connexe et compact de IRn[X] par φ, applica-
tion continue, est un sous-ensemble compact et connexe de IR+. Les compacts
connexes de IR sont exactement les intervalles fermés bornés. On a donc

φ(B(0, R)) = [α, β] ⊂ IR+.

Il existe P0 ∈ B(0, R) tel que φ(P0) = α et donc

inf
p∈IRn[X]

‖f − p‖∞ = inf
p∈B(0,R)

‖f − p‖∞ = φ(P0).

Unicité
Etape 1 Montrons dans un premier temps qu'il existe n + 2 points (xi) en
lesquels

|f(xi)− P0(xi)| = ‖f − P0‖∞.
Supposons que ce ne soit pas le cas, que l'égalité soit satisfaite en seulement
k points 1 ≤ k < n+ 2. Soit q l'unique polynôme qui interpole f aux points
xi i = 1, · · · k. q est donc de degré inférieur ou égal à n. Par continuité de
x 7→ f(x)− q(x) aux points (xi), on déduit qu'il existe Vε un ouvert tel que
xi ∈ Vε pour tout i et

|f(x)− q(x)| ≤ ε, ∀x ∈ Vε. (2.29)

Pour t ∈]0, 1[, on pose Pt = (1− t)P0 + tq. On a

Pt − f = (1− t)P0 + tq − (1− t)f − tf = (1− t)(P0 − f) + t(q − f).

Pour x ∈ Vε, d'après (2.29), on a

|(f − Pt)(x)| ≤ (1− t)‖f − P0‖∞ + tε.

Pour x /∈ Vε, on a

|(f − Pt)(x)| ≤ sup
y/∈Vε
|(f − P0)(y)|+ tA,

oÃ1A=‖f − q‖. Observons que

sup
y/∈Vε
|(f − P0)(y)| < ‖f − P0‖∞.
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L'inégalité précédente est stricte car xi /∈ Vε et par dé�nition des (xi), y 7→
|f(x)− P0(x)| atteint son maximum en ces points. Choisissons t assez petit
de telle sorte que

sup
y/∈Vε
|(f − P0)(y)|+ tA < ‖f − P0‖∞. (2.30)

D'autre part, posant ε = ‖f−P0‖∞
2

, on obtient pour tout t ∈ [0, 1]

sup
x∈Vε
|(f − Pt)(x)| ≤ (1− t/2)‖f − P0‖∞ < ‖f − P0‖∞. (2.31)

En conslusion, compte-tenu de (2.30) et (2.31), on a

‖f − Pt‖∞ < ‖f − P0‖∞.

On obtient une contradiction puique P0 est le polynôme de meilleur approx-
imation (Pt est un polynôme de meilleure approximation de f que P0 !).
Etape 2
Considérons à présent le polynôme P = P1+P2

2
où P1 et P2 sont deux polynôme

de meilleure approximation. P est également un polynôme de meilleure ap-
proximation. En e�et, par inégalité triangulaire

‖P1 + P2

2
− f‖∞ ≤

1

2
(‖f − P1‖∞ + ‖f − P2‖∞) = ‖f − P1‖∞.

Donc ‖f −P1‖ = ‖f −P2‖ = ‖P1+P2

2
− f‖. Soient les n+ 2 points (xi) dé�nis

par

‖f − P1 + P2

2
‖ = |f(xi)−

P1 + P2

2
(xi)|.

De tels points existent d'après l'étape 1. On a

‖P1 + P2

2
−f‖∞ = |(P1 + P2

2
−f)(xi)| ≤

1

2
|(P1−f)(xi)|+

1

2
|(P2−f)(xi)| ≤ ‖f−P1‖∞.

Comme ‖P1+P2

2
− f‖∞ = ‖f − P1‖∞, les inégalités ci-dessus sont en réalités

des égalités. Donc

1

2
|(P1 − f)(xi)|+

1

2
|(P2 − f)(xi)| = ‖f − P1‖∞ = ‖f − P2‖∞.

Il en résulte que l'on doit avoir 1
2
|(P2− f)(xi)| ≥ 1

2
‖f −P1‖∞ = 1

2
‖f −P2‖∞.

Donc on a
|(P1 − f)(xi)| = |(P2 − f)(xi)| = ‖f − P1‖∞.
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On obtient �nalement

|(P1 − f)(xi)| = |(P2 − f)(xi)|.

Or (P1 − f)(xi) et (P2 − f)(xi) possèdent le même signe, puisque si

(P1 − f)(xi) = −(P2 − f)(xi),

alors (P1+P2

2
− f)(xi) = 0 ce qui implique que f ∈ IR[X]. On en déduit que

P1(xi) = P2(xi) pour tout i. Donc le polynôme P1−P2 admet n+ 2 racines,
il est nul et P1 = P2.

Remarque 2.41 Le schéma de la preuve suivi pour établir l'existence dans
le théorème 2.40 s'adapte sans di�culté au cas où on remplace IRn[X] par
un espace vectoriel normé de dimension �ni.
Soit une fonction φ dé�nie sur un espace vectoriel normé E de dimension
�nie à valeurs réelles, coercive (c'est-à-dire que φ(x) tend vers +∞ quand
‖x‖E tend vers +∞) et continue sur E. Alors il existe un élément u ∈ E
(non nécessairement unique) tel que

φ(u) = inf
v∈E

φ(v).

Remarque 2.42 On a montré (voir théorème 2.35) que le polynôme de
Tchebychev de degré n est la meilleure approximation de 0 par des polynômes
unitaires de degré n sur l'intervalle [−1, 1].

Une caractérisation du polynôme de meilleure approximation est donnée dans
théorème suivant, dû à Tchebychev, que l'on admettra :

Théorème 2.43 Soit f ∈ C0([a, b]). Le polynôme p ∈ IRn[X] est la meilleure
approximation uniforme de f sur [a, b] si et seulement si il existe n+2 points
a ≤ x0 < x1 < · · · < xn+1 ≤ b tel que

(−1)i(f(xi)− p(xi)) = ε0‖f − p‖∞, i = 0, · · · , n+ 1, (2.32)

où ε0 = sng(f(x0)− p(x0)).

Remarque 2.44 Nous avons établi au cours de la preuve du théorème 2.40
un résultat plus faible que la condition (2.32) : si P0 est le polynôme de
meilleure approximation de f , il existe n+ 2 points (xi) en lesquels

|f(xi)− P0(xi)| = ‖f − P0‖∞.
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Exemple Meilleure approximation de xn+1 sur [−1, 1]. On cherche pn ∈
IRn[X] tel que

‖xn+1 − pn‖∞ = inf
p∈IRn[X]

‖xn+1 − p‖∞.

Soit Tn+1 le n+ 1 ième polynôme de Tchebychev. Le coe�cient du monôme
de plus haut degré de Tn+1 est 2n. On pose

pn := xn+1 − 2−nTn+1(x).

D'après la proposition 2.33, pn est un polynôme de degré n. On va mon-
trer que d'après le théorème de Tchebychev et la proposition 2.34, pn est le
polynôme de meilleure approximation de xn+1 et

dist(xn+1, IRn[X]) =
1

2n
.

D'après la proposition 2.34, on a

max
[−1,1]

|xn+1 − pn(x)| = 1

2n
max
x∈[−1,1]

|Tn+1(x)| = 1

2n
.

De plus,

2−nTn+1(x
′
k) =

(−1)k

2n
, k = 0, · · · , n+ 1

donc x 7→ xn+1− pn(x) atteint max[−1,1] |xn+1− pn(x)| en changeant de signe
n + 2 fois : d'après le théorème de Tchebychev, pn est bien le polynôme
recherché.

Remarque 2.45 En général, la détermination du polynôme de meilleure ap-
proximation conduit à résoudre un système d'équations non linéaires, com-
portant de nombreuses inconnues. Un algorithme de résolution de ce système
est l'algorithme de Remez, non abordée dans le cadre de ce cours. En pra-
tique, on préférera utiliser le polynôme d'interpolation de Lagrange plutôt que
le polynôme de meilleure approximation. La résolution numérique du système
non linéaire est beaucoup trop coûteuse pour être "rentable".

2.6.2 Polynôme d'interpolation de Lagrange et polynôme de meilleure
approximation

On a le théorème suivant.

Théorème 2.46 Soit f ∈ C0([a, b]) (xi) n + 1 points distincts de [a, b].
Soit Pn le polynôme de Lagrange interpolant f aux points (xi) construit au
théorème 2.14. Alors on a

dist(f, IRn[X]) ≤ ‖f − Pn‖∞ ≤ (1 + ‖Λn‖∞)dist(f, IRn[X]),
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où

Λn(x) =
n∑
i=0

|li(x)|,

li ième polynôme élémentaire de Lagrange.

Preuve Notons par P le polynôme de meilleure approximation dé�ni dans
le théorème 2.40. On a par inégalité triangulaire

‖f − Pn‖∞ ≤ ‖f − P‖∞ + ‖P − Pn‖∞. (2.33)

Le polynôme qui interpole P aux points (xi) est lui-même (P (x) =
∑n

i=0 P (xi)li(x)),
donc pour x ∈ [a, b], on a

P (x)− Pn(x) =
n∑
i=0

(P (xi)− f(xi))li(x).

Par inégalité triangulaire, on en déduit que

|P (x)− Pn(x)| ≤
n∑
i=0

|P (xi)− f(xi)||li(x)| ≤ ‖f − P‖∞Λn(x).

Il en résulte que
‖P − Pn‖∞ ≤ ‖f − P‖∞‖Λn‖∞.

De (2.33) et de l'inégalité précédente, on déduit le résultat recherché.

2.7 Compléments sur l'interpolation

2.7.1 Fonctions splines

On considère dans la suite f : [a, b] → IR et x0 = a < x1 < · · · < xn = b,
n+ 1 points distincts de [a, b].

Dé�nition 2.47 Soit n ∈ IN∗. On appelle fonction spline, une fonction s de
classe C2 sur [a, b] interpolant f aux points (xi)0≤i≤n, telle que la restriction
de s à l'intervalle [xi, xi+1] i = 0, · · · , n − 1, notée si, est un polynôme de
degré inférieur ou égal à 3.

Comme s interpole f aux points (xi), on a les égalités :

si(xi) = fi := f(xi), i = 0, · · · , n− 1 et si−1(xi) = fi, i = 1, · · · , n
(2.34)
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Comme la fonction s est de classe C2([a, b]), on a les relations suivantes qui
expriment la continuité de s et de ses dérivées premières et secondes aux
points (xi) : pour i = 1, · · · , n− 1, on a

s′i−1(xi) = s′i(xi), s′′i−1(xi) = s′′i (xi). (2.35)

La fonction si est un polynôme de degré 3 pour tout i = 0, · · · , n− 1, donc
déterminer s revient à déterminer la valeurs de 4n inconnues. Les conditions
(2.34) conduisent à écrire un système linéaire à 2n équations, quant aux
conditions (2.35), elles se traduisent par un système linéaire à n− 1 + n− 1
équations. On obtient donc un système à 4n−2 équations à 4n inconnues. Il
est donc nécessaire d'ajouter deux autres conditions a�n d'assurer l'unicité
de la fonction spline. Plusieurs choix sont possibles, comme par exemple
poser s′′(a) = s′′(b) = 0.

Théorème 2.48 Il existe une unique fonction spline au sens de la dé�nition
2.47, satisfaisant la condition

s′′(a) = s′′(b) = 0. (2.36)

A�n d'établir le théorème 2.48, on aura recours à la proposition suivante

Proposition 2.49 Soit A ∈ Mn(IR) une matrice à diagonale strictement
dominante, c'est-Ã -dire telle que pour tout i ∈ {1, · · · , n}, on a

n∑
j=1,j 6=i

|aij| < |aii|. (2.37)

Alors, la matrice A est inversible.

Preuve Montrons que l'ensemble des vecteurs X tels que AX = 0 est réduit
à {0}. Supposons que cela ne soit pas le cas. Soit X un vecteur non nul tel
que AX = 0. Soit i0 tel que

|Xi0| = max
i∈{1,··· ,n}

|Xi|.

Puisque X 6= 0, on a Xi0 6= 0. On a

(AX)i0 =
n∑
j=1

ai0jXj = 0,

donc par inégalité triangulaire

|ai0i0| ≤
n∑

j=1,j 6=i0

|ai0j||
Xj

Xi0

| ≤
n∑

j=1,j 6=i0

|ai0j|.
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Cette inégalité contredit (2.37). Il est résulte que le noyau de A est vide et
donc A est inversible.

Preuve du théorème 2.48
Etape 1. Détermination de s en fonction de s′′i .
On pose hi = xi+1 − xi, i = 0, · · · , n− 1. Pour i = 1, · · · , n− 1, on note par
s′′i la valeur de s′′i (xi). Comme s′′(a) = s′′(b) = 0, on pose s′′0 = s′′n = 0.
Par interpolation aux points xi et xi+1 et compte-tenu de (2.35), on obtient
pour i = 0, · · · , n− 1

s′′i (x) = s′′i
xi+1 − x

hi
+ s′′i+1

x− xi
hi

.

En intégrant deux fois l'égalité précédente, on obtient

si(x) = s′′i
(xi+1 − x)3

6hi
+ s′′i+1

(x− xi)3

6hi
+ ai(xi+1 − x) + bi(x− xi),

où ai et bi sont des constantes à déterminer. Les conditions si(xi) = fi et
si(xi+1) = fi+1 se traduisent par

s′′i
h2i
6

+ aihi = fi, s′′i+1

h2i
6

+ bihi = fi+1.

Remplaçant alors ai et bi par leur valeur respective, on obtient pour i =
0, · · · , n− 1 :

si(x) = s′′i

(
(xi+1 − x)3

6hi
− hi

6
(xi+1 − x)

)
+ s′′i+1

(
(x− xi)3

6hi
− hi

6
(x− xi)

)
+
fi
hi

(xi+1 − x) +
fi+1

hi
(x− xi).

Etape 2. Détermination des valeurs de s′′i
A�n de déterminer si pour tout i ∈ {0, · · · , n − 1}, il faut et il su�t de
déterminer la valeur de s′′i pour tout i ∈ {1, · · · , n− 1}.
D'après l'étape 1, on a

s′i(x) = s′′i

(
−(xi+1 − x)2

2hi
+
hi
6

)
+ s′′i+1

(
(x− xi)2

2hi
− hi

6

)
− fi
hi

+
fi+1

hi
.

La relation s′i(xi) = s′i−1(xi) équivaut à

−s′′i
hi
3
− s′′i+1

hi
6
− fi − fi+1

hi
= s′′i−1

hi−1
6

+ s′′i
hi−1

3
− fi−1 − fi

hi−1
.
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ou encore

his
′′
i+1 + 2(hi + hi−1)s

′′
i + hi−1s

′′
i−1 = 6

(
fi+1 − fi

hi
− fi − fi−1

hi−1

)
.

pour i = 1, 2, · · · , n − 1. Nous avons obtenu un système linéaire de n − 1
équations à n−1 inconnues (à noter que d'après (2.36), s′′0 et s

′′
n sont connus).

La matrice A du système linéaire obtenu précédemment est tridiagonale, à
diagonale strictement dominante. D'après la proposition 2.49, elle est donc
inversible et la solution est unique. On a donc établi l'existence et l'unicité
de la fonction spline.

On désigne par G l'ensemble des fonctions de classe C2([a, b]) interpolant f
aux points xi et satisfaisant l'une des deux conditions aux limites suivantes :

s′(a) = f ′(a), s′(b) = f ′(b), ou s′′(a) = s′′(b) = 0. (2.38)

La fonction spline possède la propriété remarquable suivante :

Théorème 2.50 La fonction spline est l'unique fonction qui minimise l'énergie
de �exion, autrement dit,

min
g∈G

∫ b

a

g′′(x)2dx =

∫ b

a

s′′(x)2dx. (2.39)

Preuve Etape 1. La fonction spline minimise l'énergie de �exion.
Montrons que ∫ b

a

s′′(x)e′′(x)dx = 0, (2.40)

où e(x) := f(x)− s(x). E�ectuons deux intégrations par parties successives
de
∫ b
a
s′′(x)e′′(x)dx. On obtient∫ b

a

s′′(x)e′′(x)dx = [s′′e′]ba −
n−1∑
i=0

∫ xi+1

xi

s(3)(x)e′(x)dx

puis∫ b

a

s′′(x)e′′(x)dx = s′′(b)e′(b)−s′′(a)e′(a)−
n−1∑
i=0

(
−
∫ xi+1

xi

s(4)(x)e(x)dx+ [s(3)(x)e(x)]xi+1
xi

)
.

Or, d'une part s(4) = 0 puisque s est une fonction polynômiale de degré
inférieur ou égal à 3 par morceaux et e(xi) = 0 pour tout i. Il en résulte que∫ b

a

s′′(x)e′′(x)dx = s′′(b)e′(b)− s′′(a)e′(a),
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et d'après (2.38), on a s′′(b)e′(b)− s′′(a)e′(a) = 0. On en déduit donc (2.40).
Il en résulte que∫ b

a

f ′′(x)2dx =

∫ b

a

e′′(x)2dx+

∫ b

a

s′′(x)2dx, (2.41)

puisque e+ s = f et∫ b

a

((e+ s)′′)(x)2dx =

∫ b

a

e′′(x)2dx+

∫ b

a

s′′(x)2dx+ 2

∫ b

a

e′′(x)s′′(x)dx.

La relation (2.41) est vraie pour toute fonction g ∈ G, on en déduit immédi-
atement que ∫ b

a

g′′(x)2dx ≥
∫ b

a

s′′(x)2dx, ∀ g ∈ G

puis que

min
g∈G

∫ b

a

g′′(x)2dx =

∫ b

a

s′′(x)2dx.

Etape 2. Unicité du minimiseur
Soient (s1, s2) ∈ G2, deux minimiseurs de l'énergie. Alors d'après la relation
(2.41), on a∫ b

a

s′′1(x)2dx =

∫ b

a

(s′′1(x)− s′′2(x))2dx+

∫ b

a

s′′2(x)2dx.

Comme
∫ b
a
s′′1(x)2dx =

∫ b
a
s′′2(x)2dx, il en résulte que∫ b

a

(s′′1(x)− s′′2(x))2dx = 0.

Donc les fonctions s1 et s2 di�èrent d'une fonction a�ne. Les conditions
s1(xj) = s2(xj) = f(xj), j = 0, · · · , n impliquent que les fonctions s1 et s2
sont égales, ce qui achève la preuve du théorème 2.50.

3 Intégration numérique

Dans toute la suite, on considère une fonction f dé�nie sur [a, b] à valeurs
réelles, intégrables sur [a, b] et a ≤ x0 < x1 < · · · < xn ≤ b, n + 1 points
distincts de [a, b]. On pose

I(f) =

∫ b

a

f(t)dt
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et on se propose de déterminer une valeur approchée de I(f). Comme an-
noncé dans l'introduction, la première méthode consistera à approcher I(f)
par I(pn) où pn est le polynôme qui interpole f aux points (xi)0≤i≤n.

Dans ce chapitre consacré à l'intégration numérique, on utilisera régulière-
ment la deuxième formule de la moyenne :

Théorème 3.1 Soit f une fonction continue sur [a, b] et g une fonction
positive, intégrable sur [a, b]. Alors il existe ρ ∈ [a, b] tel que∫ b

a

f(t)g(t)dt = f(ρ)

∫ b

a

g(t)dt. (3.1)

Remarque 3.2 La version �discrète� de la formule (3.1) a été établi dans la
proposition 2.5. La preuve de (3.1) est analogue à celle donnée pour établir
(2.1).

Preuve On pose ψ(x) :=

∫ b

a

f(t)g(t)dt−f(x)

∫ b

a

g(t)dt. La fonction g étant

positive, on en déduit que
∫ b
a
g(t)dt ≥ 0. Comme la fonction f est continue

sur [a, b], elle admet un minimum et un maximum atteint respectivement en
x̄ et x̂. On a alors, comme g est positive sur [a, b]∫ b

a

f(t)g(t)dt ≥
∫ b

a

f(x̄)g(t)dt

et donc

ψ(x̄) ≥
∫ b

a

f(x̄)g(t)dt− f(x̄)

∫ b

a

g(t)dt = 0.

On montre de même que
ψ(x̂) ≤ 0.

On déduit du théorème des valeurs intermédiaires qu'il existe ζ ∈ [a, b] tel
que ψ(ζ) = 0, ce qui achève la preuve du théorème.

3.1 Formules de quadratures

On se propose d'approcher I(f) par une expression de la forme suivante, dite
formule de quadrature à n+ 1 points

In(f) :=
n∑
i=0

αif(xi), (3.2)
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(xi){i=0,··· ,n} ∈ [a, b] distincts deux-à-deux et (αi){i=0,··· ,n} réels.
On pose

E(f) = I(f)− In(f).

On désignera par V un sous-espace vectoriel de fonctions dé�nies sur [a, b] à
valeurs réelles, intégrables sur [a, b].

Dé�nition 3.3 On dit qu'une formule de quadrature est exacte sur l'ensemble
V si

I(f)− In(f) = 0, ∀ f ∈ V.

Dé�nition 3.4 Nous dirons qu'une formule de quadrature à n+1 points est
d'ordre n si elle est exacte pour tout polynôme de degré inférieur ou égal à
n. Autrement dit

I(p)− In(p) = 0, ∀ p ∈ V := IRn[X].

Proposition 3.5 Une formule de quadrature à n + 1 points est exacte sur
IRn[X] si et seulement si elle est de type interpolation à n + 1 points, c'est-
à-dire si

αk :=

∫ b

a

lk(t)dt, ∀ k ∈ {0, · · · , n}

où lk représente le k-ième polynôme élémentaire de Lagrange.

Preuve Supposons la formule exacte sur IRn[X]. Alors pour tout polynôme
élémentaire de Lagrange li, on a :∫ b

a

lk(t)dt =
n∑
i=0

αilk(xi) = αk, k = 1, · · · , n.

Réciproquement, supposons αk :=

∫ b

a

lk(t)dt pour tout k. IRn[X]. Soit

P ∈ IRn[X]. Le polynôme qui interpole P aux points (xi) n'est autre que P .
On a donc ∫ b

a

P (t)dt =

∫ b

a

n∑
i=0

P (xi)li(t)dt =
n∑
i=0

αiP (xi).

On a montré que si la formule est de type interpolation, elle est exacte sur
IRn[X].

Proposition 3.6 Soit m ∈ IN∗. Une formule de quadrature à n + 1 points
est exacte sur IRm[X] si et seulement si

E(xi) = 0, ∀ i ∈ {0, · · · ,m}. (3.3)
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Preuve Observons que f 7→ E(f) est linéaire (en e�et, les applications
f 7→

∫ b
a
f(t)dt et f 7→

∑n
i=0 f(xi)λi sont linéaires). Si les égalités (3.3) sont

satisfaites, par linéarité, on obtient pour tout (β0, β1, · · · , βm) ∈ IRm

m∑
i=0

βiE(xi) = E(
m∑
i=0

βix
i) = 0,

ce qui achève la preuve de la proposition 3.6.

3.2 Formules de Newton-Cotes

3.2.1 Formule des rectangles

La méthode des rectangles consiste à approcher I(f) par f(a)(b−a) (méthode
des rectangles à gauche), ou f(b)(b − a) (méthode des rectangles à droite).
La formule de quadrature (3.2) se réduit à

I0(f) :=
0∑
i=0

αif(xi) = (b− a)f(a).

Ici, x0 = a et α0 = b− a.
L'erreur est donné dans la proposition suivante :

Proposition 3.7 Supposons f de classe C1 sur [a, b]. L'erreur dans la méth-
ode des rectangles est donnée par :

f ′(η)
(b− a)2

2
, η ∈]a, b[. (3.4)

De plus, la méthode des rectangles est une méthode exactement d'ordre 0.

Preuve Pour tout x ∈]a, b[, il existe cx ∈]a, x[

f(x)− f(a) = f ′(cx)(x− a).

Intégrant cette égalité entre a et b et utilisant la deuxième formule de la
moyenne en posant g(x) = x− a, on déduit qu'il existe η ∈]a, b[ tel que∫ b

a

f(t)dt = f(a)(b− a) + f ′(η)
(b− a)2

2
.

Par dé�nition, la méthode est d'ordre 0. Montrons qu'elle n'est pas d'ordre
1. En e�et, d'une part on a ∫ b

a

xdx =
b2

2
− a2

2
,
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d'autre part, on a
f(a)(b− a) = a(b− a).

Or
b2

2
− a2

2
= a(b− a)

équivaut à 1
2
(b− a)2 = 0, donc b = a.

3.2.2 Formule des trapèzes

On approche f par son polynôme d'interpolation de degré 1. Une approxi-

mation de
∫ b

a

f(t)dt est donnée par
∫ b

a

P1(t)dt, où P1 est donné par

P1(t) = f(a) + f [a, b](t− a).

On a ∫ b

a

P1(t)dt = (f(a) + f(b))
b− a

2
.

L'erreur est donné dans la proposition suivante :

Proposition 3.8 Supposons f de classe C2 sur [a, b]. L'erreur dans la méth-
ode des trapèzes est donnée par :

E(f) =
f ′′(η)

2

∫ b

a

(x− a)(x− b)dx = −f ′′(η)
(b− a)3

12
, η ∈ [a, b]. (3.5)

De plus, la méthode des trapèzes est une méthode d'ordre 1.

Preuve
Etape 1. Estimation de l'erreur D'après le théorème 2.20, on déduit que∫ b

a

f(t)dt−
∫ b

a

P1(t)dt =

∫ b

a

f ′′(ηx)

2
(x− a)(x− b)dx.

La fonction g(x) = (x− a)(x− b) est de signe constant sur [a, b] (g est néga-
tive), donc d'après la deuxième formule de la moyenne, on obtient l'estimation

E(f) =
f ′′(η)

2

∫ b

a

(x− a)(x− b)dx = −f ′′(η)
(b− a)3

12
, η ∈ [a, b].

Étape 2. Détermination de l'ordre de la méthode.
Par construction, la méthode est au moins d'ordre 1. Montrons qu'elle est
exactement d'ordre 1.
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Étudions d'abord le cas particulier suivant. Posons f(x) = x2, a = −1 et
b = 1. On a ∫ b

a

x2dx =
2

3
.

D'autre part

(f(a) + f(b))
b− a

2
= 2.

La méthode n'est donc pas d'ordre 1 dans ce cas.
Cas où a et b sont quelconques.
Posons t = φ(x), x ∈ [−1, 1] où φ est dé�nie en (2.24). On a∫ 1

−1
f(x)dx =

2

b− a

∫ b

a

foφ−1(t)dt

et alors d'après l'étape 1∫ 1

−1
f(x)dx 6= (f(−1) + f(1))

1− (−1)

2

et comme (f(−1) + f(1))1−(−1)
2

= (foφ−1(a) + foφ−1(b)) on obtient∫ b

a

foφ−1(t)dt 6= (foφ−1(a) + foφ−1(b))
b− a

2
.

Par conséquent, la formule n'est pas exacte si on choisit g(t) = foφ−1(t), ce
qui démontre que la formule n'est pas d'ordre 2. Nous venons donc d'établir
que la méthode est exactement d'ordre 1, ce qui achève la preuve de la
proposition 3.8.

3.2.3 Méthode de Simpson

On approche f par son polynôme d'interpolation de degré 2. Une approxi-

mation de
∫ b

a

f(t)dt est donnée par
∫ b

a

P2(t)dt, où P2 est le polynôme qui

interpole f en x0 = a, x1 =
a+ b

2
et x2 = b. P2 est donné par

P2(t) = f(a) + f [a, b](x− a) + f [a,
a+ b

2
, b](x− a)(x− b).

Après intégration, on trouve∫ b

a

P2(t)dt =
b− a

6

(
f(a) + 4f(

a+ b

2
) + f(b)

)
.

La méthode de Simpson est d'ordre 2 au moins. Montrons qu'elle est exacte-
ment d'ordre 3.
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Proposition 3.9 La méthode de Simpson est une méthode exactement d'ordre
3.

Preuve Par construction, la méthode est une méthode d'ordre 2 au moins.
Montrons qu'elle est d'ordre 3.
Posons f(x) = x3. On obtient d'une part∫ b

a

f(t)dt =
b4

4
− a4

4

et d'autre part

b− a
6

(
a3 + 4(

a+ b

2
)3 + b3

)
=
b− a

6
(a3 +

1

2
(a+ b)3 + b3)

=
b− a

6
(
3

2
a3 +

3

2
b3 +

3

2
a2b+

3

2
ab2) =

b4

4
− a4

4
.

D'après la proposition 3.6, la méthode est donc au moins d'ordre 3. Montrons
qu'elle n'est pas d'ordre 4.
Etape 1. Cas où a = −1 et b = 1.
Posons f(x) = x4, a = −1 et b = 1. On a alors∫ b

a

f(t)dt =
b5

5
− a5

5
=

2

5
.

D'autre part,
b− a

6
(a4 +

1

2
(a+ b)4 + b4). =

2

3
.

On en déduit que la méthode n'est pas d'ordre 4 dans ce cas.

Etape 2 Cas où a et b sont quelconques.
Posons t = φ(x), x ∈ [−1, 1] où φ est dé�nie en (2.24). On a alors d'après
l'étape 1∫ 1

−1
f(x)dx =

2

b− a

∫ b

a

foφ−1(t)dt 6= 1

3

(
foφ−1(a) + 4foφ−1(

a+ b

2
) + foφ−1(b)

)
.

Par conséquent, la formule n'est pas exacte si on choisit g(t) = foφ−1(t), ce
qui démontre que la formule n'est pas d'ordre 4.

Remarque 3.10 On montrera un peu plus loin que pour f ∈ C4([a, b]),
l'erreur dans cette méthode est donnée par

E(f) = −f (4)(η)
(b− a)5

2880
, η ∈]a, b[.

La méthode de simpson, en raison de la simplicité de sa mise en oeuvre et de
sa précision est la plus utilisée par les calculatrices pour tous calculs approchés
d'intégrales de fonctions explicites.
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3.3 Méthodes composites

3.3.1 Méthode composite des rectangles

Soit N ∈ IN∗. On pose h =
b− a
N

. On pose xi = a + ih i = 0, · · · , N . On

va appliquer la méthode des rectangles exposée précédemment sur chaque
intervalle [xi, xi+1]. D'après la proposition 3.7, on obtient∫ xi

xi−1

f(x)dx = (xi − xi−1)f(xi−1) + f ′(ηi)
(xi − xi−1)2

2
, ηi ∈]xi−1, xi[

donc d'après la relation de Chasles∫ b

a

f(x)dx =
N∑
i=1

hf(xi−1) +
N∑
i=1

f ′(ηi)
(xi − xi−1)2

2
.

Proposition 3.11 L'erreur dans la méthode composite des rectangles est
donnée par

f ′(η)(b− a)h

2
, η ∈ [a, b]. (3.6)

Preuve D'après la proposition 2.5 appliquée en posant gi = (xi−xi−1)
2

2
, on

obtient
N∑
i=1

f ′(ηi)
(xi − xi−1)2

2
=
h2

2
f ′(η).N =

f ′(η)(b− a)h

2

d'où (3.6).

3.3.2 Méthode composite des trapèzes

On procéde de même qu'avec la méthode des rectangles. On va appliquer la
méthode des trapèzes sur chaque intervalle [xi, xi+1]. On a alors∫ b

a

f(t)dt =
N−1∑
i=0

f(xi) + f(xi+1)

2
h+

N−1∑
i=0

−f ′′(ηi)
(xi+1 − xi)3

12
.

soit ∫ b

a

f(t)dt = h
f(a) + f(b)

2
+ h

N−1∑
i=1

f(xi) + E(f)

avec

E(f) = −
N−1∑
i=0

f ′′(ηi)
(xi+1 − xi)3

12
.

On
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Proposition 3.12 L'erreur dans la méthode composite des trapèzes est don-
née par

−f
′′(η)h2(b− a)

12
, η ∈ [a, b]. (3.7)

Preuve Appliquons la proposition 3.5 à l'expression −
∑N−1

i=0 f ′′(ηi)
(xi+1−xi)3

12

en posant gi := (xi+1−xi)3
12

(gi ≥ 0 pour tout i). On obtient alors que l'erreur
est donnée par (3.7).

3.3.3 Méthode composite de Simpson

On pose fi− 1
2

= f(xi−1+xi
2

) et fi = f(xi). On obtient alors d'après la remarque
(3.10) ∫ xi

xi−1

f(x)dx =
h

6
[fi−1 + 4fi− 1

2
+ fi]−

f (4)(ηi)(
h
2
)5

90

et en raisonnant comme précédemment, on obtient

I(f) =
h

6

N∑
i=1

(fi−1 + 4fi− 1
2

+ fi) + E(f)

avec

E(f) = −
f (4)(ζ)(h

2
)4(b− a)

180
, ζ ∈]a, b[ (3.8)

3.4 Applications

On considère

I =

∫ 1

0

e−x
2

dx.

On veut obtenir une valeur approchée de I avec une erreur inférieure ou égale
à 10−6. Combien faut-il prendre de points d'intégrations pour obtenir une
telle erreur lorsqu'on utilise la méthode des trapèzes ?
Sur cet exemple, on a f(x) = e−x

2
, a = 0, b = 1 et h = 1

N
. D'après (3.5),

l'erreur est donnée par

−f
′′(η)

12N2
, η ∈ [0, 1].

Majorons l'expression maxη∈[0,1] |f ′′(η)|. On a pour tout x ∈ IR,

f ′′(x) = e−x
2

(4x2 − 2) et f (3)(x) = e−x
2

4x(3− 2x2).

On a f (3)(x) ≥ 0 sur [0, 1], donc f ′′ croit sur [0, 1]. On en déduit que

max
η∈[0,1]

|f ′′(η)| = max(|f ′′(0)|, |f ′′(1)|) = max(2, 2e−1) = 2.
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Il faut donc choisir N tel que

2

12N2
≤ 10−6,

soit
N ≥ 1000√

6
= 408.24.

L'entier N = 409 convient.

Avec la méthode de Simpson, compte tenu de (3.8), l'erreur est de la forme
f (4)(η) 1

(2N)4180
. On a pour tout x ∈ IR,

f (4)(x) = 4e−x
2

(3− 12x2 + 4x4) et f (5)(x) = 8xe−x
2

(−4x4 + 20x2 − 15).

Etudions le signe de f (5). Cette fonction est décroissante sur [0,
√
x1] et

croissante sur [
√
x1, 1] où x1 = 5−

√
10

2
. On en déduit que

max
η∈[0,1]

|f (4)(x)| = max(|f (4)(0)|, |f (4)(
√
x1)|, |f (4)(1)|) = 12.

L'erreur est inférieure à 10−6 si

12
1

(2N)4.180
≤ 10−6,

soit
N ≥ 8.035.

L'entier N = 9 convient.

3.5 Méthode de Péano pour le calcul de l'erreur

3.5.1 Noyau de Péano

On considère la formule de quadrature
m∑
j=0

λjf(xj). On pose t+ = max(t, 0).

On pose

R(f) =

∫ b

a

f(t)dt−
m∑
j=0

λjf(xj).

La preuve du théorème suivant repose sur la formule de Taylor avec reste
intégral (2.10).
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Théorème 3.13 Soit n ∈ IN . Si la formule de quadrature
∑m

j=0 λjf(xj) est
d'ordre n (exacte pour les polynômes de degré inférieur ou égal à n), alors
pour tout f ∈ Cn+1([a, b]), on a

R(f) =

∫ b

a

f(t)dt−
m∑
j=0

λjf(xj) =

∫ b

a

K(t)f (n+1)(t)dt

où

K(t) :=
1

n!
R(x 7→ (x− t)n+), (x− t)n+ =

{
(x− t)n si x ≥ t
0 sinon.

Preuve
On pose

P (x) := f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n.

D'après la formule de Taylor avec reste intégral (voir théorème 2.10), on
obtient

R(f) = R(P ) +R(

∫ x

a

(x− t)n

n!
f (n+1)(t)dt).

La formule étant exacte à l'ordre n, on obtient R(P ) = 0. On a donc

R(f) = R(

∫ b

a

(x− t)n+
n!

f (n+1)(t)dt).

Comme la fonction
f (n+1)(t)(x− t)n+

est intégrable sur [a, b]× [a, b], on a d'après le théorème de Fubini

1
n!
R

(∫ b

a

f (n+1)(t)(x− t)n+dt
)

= 1
n!

(∫ b

a

∫ b

a

f (n+1)(t)(x− t)n+dtdx−
m∑
j=0

λj

∫ b

a

f (n+1)(t)(xj − t)n+dt

)

=
1

n!

(∫ b

a

f (n+1)(t)(

∫ b

a

(x− t)n+dx−
m∑
j=0

λj(xj − t)n+)dt

)
=

∫ b

a

K(t)f (n+1)(t)dt.

Dé�nition 3.14 La fonction K dé�nie dans le théorème précédent est le
noyau de Péano d'ordre n de la formule d'intégration approchée considérée.

On déduit du théorème 3.13, la proposition suivante :
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Proposition 3.15 Si le noyau de Péano d'ordre n associé à une formule de
quadrature est de signe constant, alors il existe ζ ∈ [a, b] tel que

R(f) =

∫ b

a

K(t)dt.f (n+1)(ζ). (3.9)

De plus, ∫ b

a

K(t)dt =
1

(n+ 1)!
R(x 7→ xn+1).

Preuve
D'après le théorème 3.13, on a R(f) =

∫ b
a
K(t)f (n+1)(t)dt. Comme K est de

signe constant sur [a, b], d'après la deuxième formule de la moyenne (3.1), on
obtient qu'il existe ζ ∈ [a, b] tel que

R(f) =

∫ b

a

K(t)dt.f (n+1)(ζ).

Appliquant (3.9) à f(x) = xn+1, on obtient∫ b

a

K(t)dt =
1

(n+ 1)!
R(xn+1),

ce qui achève la preuve de la proposition 3.15.

3.5.2 Exemple de calcul de noyau de Péano et estimation d'erreur

On considère la méthode des trapèzes sur [−1, 1]. Dans la méthode des

trapèzes appliquée sur [−1, 1], on approche
∫ 1

−1
f(t)dt par f(−1) + f(1).

Proposition 3.16 Le noyau de Péano associé à la méthode des trapèzes sur
[−1, 1] est donné par

K(t) =
1

1!
R[x 7→ (x− t)+] =

t2 − 1

2
, t ∈ [−1, 1].

L'erreur dans la méthode des trapèzes sur [−1, 1] est donnée par

−2

3
f (2)(ζ).

Preuve Par dé�nition, on a

K(t) =
1

1!
R[x 7→ (x− t)+] =

∫ 1

−1
(x− t)+dx− (1− t)+ − (−1− t)+.
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Par dé�nition, on a (1− t)+ = 1− t et (−1− t)+ = 0. De plus,∫ 1

−1
(x− t)+dx =

∫ 1

t

(x− t)dx =
(1− t)2

2
.

On a donc

K(t) =
1

1!
R[x 7→ (x− t)+] =

t2 − 1

2
.

Remarquons que le noyau de Péano K est de signe constant (négatif) sur
[−1, 1]. D'après la proposition 3.15, on en déduit l'expression de l'erreur
suivante :

R(f) =

∫ b

a

f (2)(t)K(t)dt = f (2)(ζ).
1

2!
R(x2)

On a

R(x2) =

∫ 1

−1
t2dt− 2 =

2

3
− 2 = −4

3
.

L'erreur dans la méthode des trapèzes sur [−1, 1] est donnée par

−2

3
f (2)(ζ).

On retrouve bien la formule donnée en (3.5) en posant a = −1 et b = 1.

Proposition 3.17 Le noyau de Péano de la méthode de Simpson localisée
sur [−1, 1] est donné par

K(t) = −(1− |t|)3(1 + 3|t|)
72

.

L'erreur dans la méthode de Simpson sur [a, b] est donnée par :

E(f) = −(b− a)5

25.90
f (4)(ζ).

Preuve Établissons ce résultat pour t ≥ 0 (le cas t ≤ 0 est laissé au lecteur
en exercice). Par dé�nition du noyau, on a pour t ∈ [−1, 1]

K(t) =
1

6

(∫ 1

−1
(x− t)3+dx−

1

3
(−1− t)3+ +

4

3
(−t)3+ +

1

3
(1− t)3+

)
.

Pour t ≥ 0, on a (−1− t)+ = 0, (−t)3+ = 0 et (1− t)3+ = 1− t3. Par ailleurs,
on a∫ t

−1
(x− t)3+dx = 0 et

∫ 1

t

(x− t)3+dx =

∫ 1

t

(x− t)3dx =
(1− t)4

4
.
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On en déduit que

K(t) =
1

6

(
(1− t)4

4
− 1

3
(1− t)3

)
= −(1− t)3(1 + 3t)

72
.

On observe que K est de signe constant sur [−1, 1]. D'après la proposition
3.15, on a

R(f) =

∫ 1

−1
K(t)dt.f (4)(ζ), ζ ∈ [−1, 1].

De plus, ∫ 1

−1
K(t)dt =

1

4!
R(x4).

Comme ∫ 1

−1
K(t)dt =

1

4!
R(x4) =

1

24
(

∫ 1

−1
x4dx− 4

6
) = − 1

90
,

on obtient
R(f) = − 1

90
f (4)(ζ). (3.10)

Traitons le cas général à partir de ce cas particulier. Soit f ∈ C4([a, b]) et

e�ectuons le changement de variable t = φ(x) := b−a
2
x+ b+a

2
dans

∫ b

a

f(t)dt.

On a dt = b−a
2
dx. Posons g = foφ. On obtient alors

E(f) :=

∫ 1

−1
foφ(x)

b− a
2

dx− b− a
6

(foφ(−1) + 4foφ(0) + foφ(−1))

=
b− a

2
(

∫ 1

−1
g(x)dx− (

1

3
g(−1) +

4

3
g(0) +

1

3
g(−1)),

donc d'après l'estimation d'erreur obtenue en (3.10), on déduit que

E(f) = −b− a
2

1

90
g(4)(ζ).

Or, g(4)(x) =
(b− a)4

24
f (4)oφ(x). On en déduit donc que

E(f) = −(b− a)5

25.90
f (4)(φ(ζ)).

On a bien retrouvé l'estimation annoncée dans la remarque 3.10.
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3.6 Formules de Newton-Côtes

3.6.1 Formules de Newton-Côtes de type fermé

Soit n ∈ IN∗. On souhaite généraliser le travail e�ectué précédemment dans

le cas n = 0, n = 1 et n = 2. Plus généralement, on approche
∫ b

a

f(t)dt par∫ b

a

Pn(t)dt où Pn interpole f aux points équidistants xi = a + ih, h = b−a
n
,

i = 0, · · · , n. La formule de quadrature est donnée par
n∑
j=0

αnj f(a+ jh), (3.11)

avec αnj =
∫ b
a
lj(t)dt, j = 0, · · · , n. On a donc∫ b

a

f(t)dt =
n∑
j=0

αnj f(a+ jh) + E(f).

On pose

Bn
j =

1

b− a

∫ b

a

lj(t)dt.

Proposition 3.18 On a

Bn
j =

(−1)n−j

j!(n− j)!n

∫ n

0

n∏
k=0,k 6=j

(y − k)dy. (3.12)

De plus,
Bn
j = Bn

n−j, j = 0, · · · , n.

Preuve On e�ectue le changement de variable y = x−a
h
. On obtient puisque

x = a+ hy et xk = a+ kh

n∏
k=0,k 6=j

(x− xk) = hn
n∏

k=0,k 6=j

(y − k)

et
n∏

k=0,k 6=j

(xj − xk) = hn
n∏

k=0,k 6=j

(j − k) = hn(−1)n−jj!(n− j)!.

On en déduit que

Bn
j =

(−1)n−j

j!(n− j)!(b− a)

∫ n

0

n∏
k=0,k 6=j

(y − k)hdy
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et comme b− a = hn, on déduit (3.12).
Pour obtenir l'égalité Bn

j = Bn
n−j, on calcule Bn

n−j. On a

Bn
n−j =

(−1)n−(n−j)

(n− j)!j!n

∫ n

0

n∏
k=0,k 6=n−j

(y − k)dy,

donc comme
∏n

k=0,k 6=n−j(y−k) =
∏n

k=0,k 6=j(y−n+k) (e�ectuer le changement
d'indice k = n− k′),

Bn
n−j =

(−1)j

(n− j)!j!n

∫ n

0

n∏
k=0,k 6=j

(y − n+ k)dy.

On e�ectue le changement de variable u = n − y dans la dernière intégrale.
On obtient

Bn
n−j =

(−1)j

(n− j)!j!n

∫ 0

n

n∏
k=0,k 6=j

−(u− k)(−du),

soit

Bn
n−j =

(−1)j(−1)n

(n− j)!j!n

∫ n

0

n∏
k=0,k 6=j

(u− k)du.

Comme (−1)n+j = (−1)n−j, on obtient le résultat désiré, ce qui achève la
preuve de la proposition 3.18.

Les formules précédentes sont les formules fermés de Newton-Cotes de degré
n.
Concernant l'étude de l'ordre de la méthode, on peut généraliser le travail
e�ectué avec n = 1 et n = 2 et établir le théorème suivant :

Théorème 3.19 La formule de quadrature (3.11) est d'ordre n si n est im-
pair, et d'ordre n+ 1 si n est pair.

Preuve On se bornera à montrer le résultat dans le cas où a = −1 et b = 1.
D'après la proposition 3.5, la formule est au moins d'ordre n puisqu'elle est
de type interpolation à n+ 1 points.
Supposons n pair, soit n = 2p. On a

E(x2p+1) =

∫ 1

−1
x2p+1dx− 2

2p∑
k=0

Bn
kx

2p+1
k
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Comme x 7→ x2p+1 est impaire, on a
∫ 1

−1
x2p+1dx = 0. Rappelons que compte

tenu de la proposition 3.18, on a Bn
k = Bn

n−k et que d'autre part, par symétrie
de [−1, 1] par rapport à 0, on a

xp−k = −xp+k, k = 0, · · · , p,

donc xk = −xn−k k = 0, · · · , 2p. On obtient (car xp = 0)

2p∑
k=0

Bn
kx

2p+1
k =

p−1∑
k=0

Bn
kx

2p+1
k −

2p∑
k=p+1

Bn
n−kx

2p+1
n−k .

E�ectuant le changement d'indice k1 = n−k dans
2p∑

k=p+1

Bn
n−kx

2p+1
n−k , on obtient

2p∑
k=p+1

Bn
n−kx

2p+1
n−k =

0∑
k1=p−1

Bn
k1
x2p+1
k1

.

Il en résulte que
2p∑
k=0

Bn
kx

2p+1
k = 0. Donc la formule est d'ordre n + 1 si n

est pair. On peut montrer qu'elle n'est pas d'ordre strictement supérieur à
n+ 1.
On peut montrer que E(x2p+2) 6= 0 et E(x2p) 6= 0 dans le cas où n est impair
(n = 2p− 1).

Concernant l'étude de la convergence, on peut généraliser le travail e�ec-
tué pour n = 1 et n = 2 et établir le théorème suivant :

Théorème 3.20 L'erreur dans les formules de Newton-Cotes est en O(hn+1)
si la formule est d'ordre n avec n impair et d'ordre O(hn+2) si n est pair.

3.6.2 Méthode de Newton-Cotes de type ouvert

On peut construire aussi des formules de Newton-Cotes en ne prenant pas
les extrémités de l'intervalle d'intégration comme abscisses d'interpolation,
ce sont les formules de type ouvert.
Une exemple est donné par la méthode du point milieu. On approche∫ b
a
f(t)dt par (b − a)f(a+b

2
). La méthode composite du point milieu s'écrit

sous la forme

Sn :=
n−1∑
i=0

(xi+1 − xi)f(
xi + xi+1

2
) = h

n−1∑
i=0

f(
xi + xi+1

2
).
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On peut montrer la proposition

Proposition 3.21 Soient f ∈ C2([a, b]) et M := maxx∈[a,b] |f ′′(x)|. On a
l'inégalité

|
∫ b

a

f(t)dt− Sn| ≤
Mh2(b− a)

24
.

Preuve
Etape 1 Posons n = 1. On note c = a+b

2
. Comme

∫ b
a
(x− c)f ′(c))dx = 0, on

a que

(b− a)f(c) =

∫ b

a

(f(c) + (x− c)f ′(c))dx.

On a alors∫ b

a

f(x)dx− (b− a)f(c) =

∫ b

a

(f(x)− f(c)− (x− c)f ′(c))dx.

D'après la formule de Taylor-Lagrange à l'ordre 2 (2.9) appliquée au point
x = c, on déduit qu'il existe θ ∈]0, 1[ tel que

f(x)− f(c)− (x− c)f ′(c) =
f (2)(θc+ (1− θ)x

2
)(x− c)2.

Comme |f ′′(x)| ≤M pour tout x ∈ [a, b], on obtient la majoration pour tout
x ∈ [a, b]

|f(x)− f(c)− (x− c)f ′(c)| ≤ M

2
(x− c)2.

Intégrant l'inégalité entre [a, b], il vient

|
∫ b

a

f(x)dx− (b− a)f(c)| ≤ M

2

∫ b

a

(x− c)2dx =
M(b− a)3

24
.

Etape 2 Cas général.
D'après la première étape appliquée en posant a = xi et b = xi+1, on obtient

|
∫ xi+1

xi

f(x)dx− hf(
xi+1 + xi

2
)| ≤ Mh3

24
.

Appliquant alors la relation de chasles entre a et b, on obtient

|
∫ b

a

f(t)dt− Sn| = |
n−1∑
i=0

(

∫ xi+1

xi

f(t)dt− f(
xi + xi+1

2
)h)|

puis par inégalité triangulaire

|
∫ b

a

f(t)dt− Sn| ≤
n−1∑
i=0

Mh3

24
=
M(b− a)h2

24
.

56



3.7 Convergence et stabilité

Les formules de quadrature s'expriment en fonction du paramètre n. Il est
raisonnable de penser que si n augmente, on obtienne un résultat plus précis,
et à la limite, on obtienne la valeur exacte de l'intégrale. On considère dans la
suite que les points xi (i ∈ {0, · · · , n}) dépendent également de n et on note
les points d'intégration par xni . On supposera que xni ∈ [a, b] ((a, b) ∈ IR2)
pour tout i et pour tout n ∈ IN .

Dé�nition 3.22 On dit qu'une formule de quadrature Ln(f) =
n∑
k=0

Ankf(xnk)

converge sur un ensemble V si quel que soit f ∈ V on a :

lim
n→+∞

n∑
k=0

Ankf(xnk) =

∫ b

a

f(x)dx.

On pose pour n ∈ IN

En(f) =

∫ b

a

f(x)dx−
n∑
k=0

Ankf(xnk).

Remarque 3.23 Dans le cas d'une approximation de
∫ b

a

f(t)dt par
∫ b

a

Pn(t)dt

où Pn désigne le polynôme de Lagrange qui interpole f aux points (xi),
i = 0, · · · , n, on a

Ani =

∫ b

a

Lni (t)dt, ∀ i = 0, · · · , n

où Lni désigne le i-ième polynôme élémentaire de Lagrange aux points (xi).
Les points xi dépendent du paramètre n puisque xi = x0 + i b−a

n
(on les notera

donc xni ).

Nous allons par la suite donner une condition nécessaire et su�sante
pour qu'une formule de quadrature de type interpolation converge. Ceci
nous conduit à introduire la notion de stabilité.

3.7.1 Stabilité

Pour qu'une méthode soit jugée bonne, il est nécessaire qu'elle soit peu sen-

sible aux erreurs de calcul. Dans une formule de la forme
n∑
k=0

Ankf(xnk), les

57



erreurs que l'on peut commettre portent sur les f(xnk). Il faut donc évaluer
la di�érence entre un calcul e�ectué avec f(xnk) et un calcul e�ectué avec
f(xnk) + εk, c'est-à-dire évaluer :

n∑
k=0

Ank(f(xnk) + εk)−
n∑
k=0

Ankf(xnk) =
n∑
k=0

Ankεk.

Dé�nition 3.24 On dit qu'une formule de quadrature de la forme Ln(f) =∑n
k=0A

n
kf(xnk) est stable si il existe une constante M > 0 indépendante de

n, telle que pour tout (ε0, ε1, · · · , εn), on a

|
n∑
k=0

Ankεk| ≤M max
k=0,··· ,n

|εk| ∀n ∈ IN. (3.13)

On peut alors établir le théorème

Théorème 3.25 La formule de quadrature
∑n

k=0A
n
kf(xnk) est stable si et

seulement si il existe une constante M > 0 telle
n∑
k=0

|Ank | ≤M, ∀ n ∈ IN. (3.14)

Preuve La condition est su�sante puisque
n∑
k=0

|Ank ||εk| ≤ max
k
|εk|

n∑
k=0

|Ank | ≤M max
k
|εk|.

Montrons qu'elle est nécessaire. Raisonnons par contraposée. S'il n'existe pas
de constante satisfaisant (3.14), alors pour tout M > 0, il existe n(M) ∈ IN
tel que

n(M)∑
k=0

|An(M)
k | > M.

Il existe donc une fonction φ croissante dé�nie sur IN et à valeurs dans IN
telle que

lim
n→+∞

φ(n)∑
k=0

|Aφ(n)k | = +∞.

Pour construire φ, il su�t de faire varier M en posant successivement M =
1, 2, 3, · · · . On pose alors φ(n) := n(M).
Pour k ∈ {0, · · · , φ(n)} tel que Aφ(n)k 6= 0, on pose

εk =
A
φ(n)
k

|Aφ(n)k |
,
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et εk = 0 sinon. Donc maxk∈{0,··· ,φ(n)} |εk| = 1. On a

|
φ(n)∑
k=0

A
φ(n)
k εk| =

φ(n)∑
k=0

|Aφ(n)k | → +∞

quand n tend vers +∞, ce qui contredit (3.13).

3.7.2 Convergence

Nous donnons par la suite une condition nécessaire et su�sante pour que
la formule de quadrature introduite à la dé�nition 3.22 soit convergente. La
preuve nécessite d'avoir recours au théorème de Banach-Steinhauss, que nous
admettrons. Son énoncé est le suivant :

Théorème 3.26 Soient E et F deux espaces vectoriels normés complets.
Soit (fn) une suite d'applications linéaires continues dé�nies sur E à valeurs
dans F telles que, pour tout x ∈ E, on a

sup
n∈IN
‖fn(x)‖F < +∞.

Alors

sup
n∈IN
‖fn‖ < +∞ (‖fn‖ := sup

x 6=0

‖fn(x)‖F
‖x‖E

).

On rappelle également que l'espace vectoriel des polynômes est dense dans
(C0([a, b]), ‖.‖∞).

Théorème 3.27 Soit f ∈ C0([a, b]). Pour tout ε > 0, il existe P ∈ IR[X]
tel que

‖f − P‖∞ < ε.

On rappelle en�n qu'une application linéaire dé�nie sur un espace vectoriel
normé E à valeurs dans un espace vectoriel normé F est continue sur E si et
seulement si il existe k > 0 telle que

‖f(x)‖F ≤ k‖x‖E, ∀x ∈ E.

Le théorème suivant fournit une condition nécessaire et su�sante pour que
la méthode de quadrature soit convergente.

Théorème 3.28 Une condition nécessaire et su�sante pour que la formule
de quadrature

∑n
i=0A

n
i f(xni ) soit convergente sur C0([a, b]) est que
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� i. ∃M > 0,
∑n

i=0 |Ani | < M, ∀n ∈ IN.

� ii. ∀ N ∈ IN, limn→+∞En(xN) = 0.

Preuve
Montrons que la condition est su�sante. Soient ε > 0 et f ∈ C0([a, b]).
D'après le théorème 3.27, il existe P ∈ IR[X] tel que

‖f − P‖∞ <
ε

2(M + b− a)
.

D'autre part, par linéarité de f 7→ En(f), on a

En(f) = En(f − P ) + En(P ).

Il existe m+ 1 réels βi tels que

P =
m∑
i=0

βix
i.

Par linéarité de En, on déduit que

En(P ) =
m∑
i=0

βiEn(xi).

D'après ii., pour tout i ∈ {0, · · · ,m}, En(xi) tend vers 0 quand n tend vers
+∞. On en déduit qu'il existe n0 tel que, pour tout n ≥ n0 on a

|En(P )| < ε

2
. (3.15)

Par ailleurs, on a par inégalité triangulaire

|En(f − P )|
≤ |
∑n

i=0A
n
i (f(xni )− P (xni ))|+

∫ b
a
|f(t)− P (t)|dt ≤ ‖f − P‖∞ (

∑n
i=0 |Ani |+ (b− a)) ,

et d'après ii., on obtient alors

|En(f − P )| ≤ (M + b− a)‖f − P‖∞ <
ε

2
. (3.16)

D'après (3.15) et (3.16), on déduit que pour tout n ≥ n0, on a

|En(f)| ≤ ε.

La convergence de la méthode est donc établie.
Établissons à présent la réciproque. ii. est alors vrai puisque x 7→ xN est une
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fonction continue sur IR. Prouvons i.
Pour tout f ∈ C0([a, b]), la suite de réels (En(f)) converge, donc elle est
bornée. D'autre part, f 7→ En(f) est linéaire continue sur C0([a, b]). En
e�et, pour tout f ∈ C0([a, b]), on a

|
∫ b

a

f(t)dt| ≤ (b− a)‖f‖∞

et

|
n∑
i=0

Ani f(xni )| ≤
n∑
i=0

|Ani |.‖f‖∞

donc, on en déduit que

|En(f)| ≤ ((b− a) +
n∑
i=0

|Ani |)‖f‖∞.

Les espaces E = (C0([a, b]), ‖.‖∞) et F = IR muni de la norme |.| sont des
espaces complets. D'autre part, comme la suite (En(f)) converge vers 0
pour tout f , elle est bornée. On peut donc appliquer le théorème de Banach-
Steinhauss (voir 3.26) avec fn := En, E = (C0([a, b]), ‖.‖∞) et F = IR muni
de la norme |.|. On en déduit qu'il existe C > 0 tel que

‖En‖ ≤ C, ∀n ∈ IN. (3.17)

Considérons alors une suite de fonctions (fn) (fn ∈ C0([a, b]) pour tout n)
telle que ‖fn‖∞ = 1 pour tout n ∈ IN et fn(xni ) = 1 si Ani > 0 et fn(xni ) = −1
si Ani < 0. On a alors

n∑
i=0

|Ani | =
n∑
i=0

Ani .fn(xi) = −En(fn) +

∫ b

a

fn(x)dx.

D'après (3.17), on en déduit que

n∑
i=0

|Ani | ≤ C + b− a.

Ainsi, i. est réalisé avec M = C + b− a, ce qui achève la preuve du théorème
3.28.

61



3.8 Formules de Gauss

3.8.1 Polynôme orthogonaux

Dans cette section, une fonction poids est une fonction dé�nie sur un ouvert
]a, b[ de IR à valeurs réelles, positive et intégrable sur ]a, b[.
Dans la suite, on considère le produit scalaire

(f, g) =

∫ b

a

f(x)g(x)w(x)dx, (3.18)

où w est une fonction poids.

Dé�nition 3.29 Une suite de polynômes (Pn) est une suite de polynômes
orthogonaux si

� degPi = i, ∀i ∈ IN ,

� (Pi, Pj) = 0 ∀ (i, j) ∈ IN2, i 6= j.

Proposition 3.30 Une suite de polynômes (Pn)n∈IN telle que degPn = n
pour tout n ∈ IN constitue une base de IR[X].

Preuve Montrons que le système {P0, P1, · · · , Pn} constitue une base de
IRn[X] pour tout n ∈ IN . Le résultat est vrai pour n = 0. Supposons le
résultat vrai pour l'entier n− 1, n ≥ 1, n quelconque. Considérons l'égalité

n∑
i=0

αiPi = 0.

On a

αnPn = −
n−1∑
i=0

αiPi,

et par hypothèse (degPi = i) le degré de −
∑n−1

i=0 αiPi est inférieur ou égal
à n − 1. Par conséquent, l'égalité précédente ne peut être satisfaite que si
αn = 0. Par hypothèse de récurrence, on en déduit que α0 = α1 = · · · =
αn−1 = 0. Donc le système P0, P1, · · · , Pn constitue une base de IRn[X] parce
qu'il compte n+ 1 vecteurs constituant un système libre dans un espace vec-
toriel de dimension n+ 1.

Le premier objectif est de construire une suite de polynômes orthogonaux
pour le produit scalaire (3.18). Cette construction repose sur le procédé
d'orthogonalisation de Gram-Schmidt.
On a la proposition fondamentale suivante :
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Proposition 3.31 Quel que soit le poids w intégrable sur [a, b], il existe une
suite de polynômes orthogonaux (Pi) au sens de la dé�nition 3.29. La suite
constituée des polynômes P0(x) = 1 et pour n ≥ 1

Pn(x) = xn −
n−1∑
i=0

cinPi

avec pour i = 0, · · · , n− 1

cin =
(xn, Pi)

(Pi, Pi)
(3.19)

satisfait les deux conditions de la dé�nition 3.29.

Preuve On construit cette suite de polynômes à partir des vecteurs de la base
canonique de IR[X] par le procédé d'orthogonalisation de Gram-Schmidt. On
pose P0(x) = 1. On construit P1 en déterminant le projeté de x sur la droite
engendrée par le vecteur 1. Le projeté orthogonal de x noté P (1) appartient
à la droite vectorielle engendrée par 1 (donc il s'écrit sous la forme α1) et
satisfait

(x− P (x), 1) = 0,

donc

α = c01 =
(x, 1)

(1, 1)
.

Le polynôme P1 recherché est donc dé�ni par

P1(x) = x− c0,1.

Supposons avoir déterminé les vecteurs P0, P1, · · · , Pn (n ≥ 1). On projette
le vecteur xn+1 sur l'espace vectoriel vect(P0, P1, · · · , Pn}. Notons P (xn+1)
le projeté orthogonal de xn+1. Ce vecteur s'écrit sous la forme P (xn+1) =∑n

i=0 αiPi, et il satisfait

(xn+1 − P (xn+1), v) = 0 ∀ v ∈ vect(P0, P1, · · · , Pn),

et en particulier en prenant v = Pj (j∈ {0, · · · , n}), on obtient :

(xn+1 − P (xn+1), Pj) = 0.

On en déduit que
(xn+1 − αjPj, Pj) = 0,

donc

αj =
(xn+1, Pj)

(Pj, Pj)
.
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Le vecteur Pn+1 dé�ni par xn+1 − P (xn+1) est orthogonal à Pi pour tout
i = 1, · · · , n. On en déduit (3.19).

Dans la suite, on note par an le coe�cient du monôme de plus
haut degré de Pn.

Remarque 3.32 Si on pose a = −1, b = 1 et w = 1 dans (3.18), on obtient
les polynômes orthogonaux de Legendre.
Si on prend a = −∞ et b = +∞, et w(x) = e−x

2
, on obtient les polynômes

orthogonaux de Hermite.
En�n, avec le choix a = −1, b = 1 et w = 1√

1−x2 , on obtient les polynômes
de Tchebychev.

Proposition 3.33 Soit k, n ∈ IN∗, k < n. Si P ∈ IRk[X], alors on a

(Pn, P ) = 0.

D'autre part, si P ∈ IR[X] est de degré n et si P ∈ IRn−1[X]⊥, alors il existe
C ∈ IR∗ tel que Pn = CP .

Preuve Il su�t d'écrire P dans une base de IRk[X] constituée de polynômes
orthogonaux. On a alors

(Pn, P ) = (Pn,
k∑
i=0

αkPk) =
k∑
i=0

αk(Pk, Pn) = 0.

D'autre part, si P ∈ (IRn−1[X])⊥ et deg P = n, on a P =
∑n

i=0 αiPi et
(P, Pj) = αj = 0 pour tout j = 1, · · · , n− 1 d'où le résultat.

On peut alors montrer que le polynôme Pn admet n racines simples dans
]a, b[.

Proposition 3.34 Soit n ∈ IN∗. Le polynôme Pn admet n racines simples
dans ]a, b[.

Preuve
Soient x1, x2, · · · , xj les racines distinctes de Pn se trouvant dans ]a, b[. On
a j ≤ n. Supposons j < n. Le polynôme Pn va changer de signe en toute
racine de multiplicité impaire. Posons pour j ≥ 1

Q(x) =

j∏
k=1

(x− xk)ε(k) où ε(k) = 1 sixk est de multiplicité impaire, 0 sinon
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et si j = 0, Q(x) = 1.
On remarque que le produit PnQ ne change pas de signe dans ]a, b[ et que
deg Q ≤ n− 1. On a donc d'après la proposition 3.33

(Pn, Q) = 0,

ce qui est impossible donc j = n. Conclusion : Toutes les racines de Pn sont
dans ]a, b[ et sont simples ce qui achève la preuve de la proposition.

On peut également établir la proposition suivante :

Proposition 3.35 Les polynômes orthogonaux véri�ent une relation de récur-
rence à trois termes

Pi+1 = Ai(x−Bi)Pi(x)− CiPi−1(x), i ∈ IN (3.20)

où

Ai =
ai+1

ai
, Bi =

(xPi, Pi)

(Pi, Pi)
, Ci =

Ai(Pi, Pi)

Ai−1(Pi−1, Pi−1)

et
P−1(x) = 0.

Preuve
On considère le polynôme Qn = Pn+1 − AnxPn et on pose

An =
an+1

an
.

Avec ce choix de An, Qn est de degré n. Ecrivons ce polynôme dans la base
P0, P1, · · · , Pn

Qn =
n∑
i=0

αiPi.

Nous avons pour j = 0, · · · , n

αj = (Qn, Pj) = (Pn+1, Pj)− An(xPn, Pj) = −An(Pn, xPj).

Mais (Pn, xPj) = 0 pour tout j = 0, · · · , n− 2, donc

Qn = αnPn + αn−1Pn−1.

Déterminons αn et αn−1. Nous pouvons écrire

xPn−1 =
an−1
an

Pn + qn−1,
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où le degré de qn−1 est inférieur ou égal à n− 1. On a

(Qn, Pn−1) = (Pn+1 − AnxPn, Pn−1) = αn−1

ou encore

αn−1(Pn−1, Pn−1) = −An(Pn, xPn−1) = −An(
an−1
an

Pn+qn−1, Pn) = −An
an−1
an

(Pn, Pn)

Donc

αn−1 = − An(Pn, Pn)

An−1(Pn−1, Pn−1)
.

Déterminons à présent αn. On a

(Qn, Pn) = (Pn+1 − AnxPn, Pn) = −An(xPn, Pn) = αn(Pn, Pn),

donc

αn = −An.(xPn, Pn)

(Pn, Pn)
.

On en déduit (3.20).

3.8.2 Formules de quadrature d'ordre maximal

On considère une formule de quadrature générale
∑n

i=1 λif(xi). L'objectif
est de choisr les (λi) et les (xi) de telle sorte que la formule de quadrature
soit d'ordre le plus élevé possible. Nous savons d'après la proposition 3.5
qu'une condition nécessaire et su�sante pour que la formule soit d'ordre
n − 1 (attention, ici, nous travaillons avec n points au lieu de n + 1 points)
est qu'elle soit de type interpolation. Il a été établi dans cette proposition que
λi =

∫ b
a
li(t)dt où li est le ième polynôme élémentaire de Lagrange. L'objectif

est de choisir les (xi) au mieux de telle sorte à rendre l'ordre de la formule le
plus élevé possible. La réponse à cette question est donnée dans le théorème
suivant :

Théorème 3.36 L'unique formule de quadrature à n points d'ordre maximal
est la formule par interpolation construite en prenant pour noeuds les zéros
du n-ième polynôme orthogonal construit dans la proposition 3.31 par rapport
au poids w. La formule ainsi déterminée est d'ordre 2n − 1. Elle est dite
formule Gaussienne.

Preuve
Soit Pn le n-ième polynôme orthogonal dé�ni dans la proposition 3.31 et
P ∈ IR2n−1[X]. On a

P = Pnq + r,
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r polynôme de degré inférieur ou égal à n − 1. Soient xj les zéros de Pn.
Montrons que la formule est bien d'ordre au moins 2n− 1. Compte-tenu des
degrés respectifs de Pn et q, on a d'après la proposition 3.33∫ b

a

Pn(x)q(x)w(x)dx = 0.

D'autre part, comme Pn(xj) = 0 pour tout j = 1, · · · , n et que∫ b

a

r(x)w(x)dx =
n∑
j=1

λjr(xj)

puisque la formule est de type interpolation, on a∫ b

a

P (x)w(x)dx =

∫ b

a

Pn(x)q(x)w(x)dx+

∫ b

a

r(x)w(x)dx

=
n∑
j=1

λjPn(xj)q(xj) +
n∑
j=1

λjr(xj) =
n∑
j=1

λjP (xj).

La formule ainsi dé�nie est donc au moins d'ordre 2n− 1.
Elle n'est pas de degré 2n puisque∫ b

a

Pn(x)2w(x)dx−
n∑
j=1

λjPn(xj)
2 =

∫ b

a

Pn(x)2dx 6= 0.

Réciproquement, considérons une formule de quadrature exacte d'ordre k ≥
2n−1, notée

∑n
j=1 µjf(yj). Comme k > n, on a vu que l'on a nécessairement

µj =

∫ b

a

lj(t)dt, ∀ j ∈ {1, · · · , n}.

Montrons à présent que yj = xj pour tout j = 1, · · · , n.
Considérons le polynôme p̃(x) =

∏n
i=1(x − yj). Pour tout P ∈ IR2n−1[X],

(degP ≥ n), on a
P = p̃Q+ r

avec degr ≤ n− 1. On obtient alors∫ b

a

P (x)w(x)dx =

∫ b

a

p̃(x)Q(x)w(x)dx+

∫ b

a

r(x)w(x)dx =
n∑
i=1

P (yj)µj =
n∑
i=1

r(yj)µj.

On a donc nécessairement∫ b

a

p̃(x)Q(x)w(x)dx = (p̃, Q) = 0.
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Le polynôme P étant quelconque, on a montré que∫ b

a

p̃(x)Q(x)w(x)dx = (p̃, Q) = 0. ∀Q ∈ IRn−1[X].

Il résulte de la proposition 3.33 que p̃ = kPn (k 6= 0) et par conséquent, les
racines de Pn sont égales à celles de p̃, autrement dit, yj = xj pour tout
j = 1, · · · , n.

On peut alors obtenir l'estimation d'erreur suivante :

Théorème 3.37 Pour f ∈ C2n(a, b]), l'erreur de quadrature dans la formule
de Gauss est donnée par∫ b

a

f(x)dx−
n∑
j=1

λjf(xj) =
f (2n)(α)

(2n)!

∫ b

a

n∏
i=1

(x− xi)2dx, α ∈]a, b[. (3.21)

Preuve
Considérons le polynôme de Hermite H2n−1 interpolant f en x1, x2, · · · , xn.
On a montré que l'erreur f(x)−H2n−1(x) est donnée par

f(x)−H2n−1(x) =
f (2n)(ζx)

(2n)!

n∏
i=1

(x− xi)2.

Intégrons l'égalité précédente entre a et b. D'après la deuxième formule de
la moyenne, on obtient∫ b

a

f (2n)(ζx)

(2n)!

n∏
i=1

(x− xi)2dx =
f (2n)(α)

(2n)!

∫ b

a

n∏
i=1

(x− xi)2dx, α ∈]a, b[.

D'autre part, comme la formule est d'ordre 2n− 1 et que le degré de H2n−1
est égal à 2n− 1, on obtient∫ b

a

H2n−1(x)ω(x)dx =
n∑
i=1

H2n−1(xi)λj =
n∑
i=1

f(xi)λj,

ce qui achève la preuve du théorème 3.37.

Exemple
Si w(x) = 1 a = −1 et b = 1, les polynômes orthogonaux de Legendre sont
donnés par P0(x) = 1, P1(x) = x, P2(x) = x2 − 1

3
, P3(x) = x3 − 3

5
x, ... Les

racines du polynôme P2 sont données par − 1√
3
et 1√

3
. On pose x1 = − 1√

3
et
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x2 = 1√
3
. Les nombres λ1 et λ2 sont égaux respectivement à

∫ 1

−1
l0(t)dt et∫ 1

−1
l1(t)dt. On a l0(x) =

√
3

2
(x+

1√
3

), d'où on déduit que

∫ 1

−1
l0(t)dt = 1.

On montre de même que λ1 = 1. Il en résulte que la formule de quadrature
à deux points (avec le choix a = −1 et b = 1) s'écrit :∫ 1

−1
f(t)dt ∼ f(− 1√

3
) + f(

1√
3

).

D'après le théorème 3.37, on déduit qu'il existe ζ ∈]− 1, 1[ tel que

E(f) =
f (4)(ζ)

4!

∫ 1

−1
(x+

1√
3

)2(x− 1√
3

)2dx =
1

135
f (4)(ζ).

3.9 Méthode de Romberg

Dans cette partie, l'objectif est de déterminer une méthode permettant d'accélérer
la vitesse de convergence de la méthode des trapèzes. La méthode présentée
ici est due à Romberg.

3.9.1 Polynômes de Bernouilli

Proposition 3.38 Il existe une unique suite de polynômes (Bn) tels que
B0(x) = 1 et

B′n(x) = nBn−1(x), ∀n ∈ IN∗ (3.22)

et ∫ 1

0

Bn(x)dx = 0. (3.23)

Les nombres bn = Bn(0) sont appelés les nombres de Bernouilli.

Preuve On construit les polynômes par récurrence. B0 est dé�ni. Supposons
Bn−1 construit pour n ≥ 1. Alors

Bn(x) = n

∫ x

0

Bn−1(t)dtdx+ k
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où k est à choisir de telle sorte que (3.23) soit véri�é. k est donc déterminée
de façon unique en posant

k = −n
∫ 1

0

∫ x

0

Bn−1(t)dtdx.

On peut alors établir la proposition suivante :

Proposition 3.39 Pour tout n ∈ IN , on a

(−1)nBn(1− x) = Bn(x). (3.24)

De plus, on a
b2n+1 = 0 ∀n ≥ 1. (3.25)

Preuve Observons que B0(1) = B0(0) et montrons que pour tout n 6= 1, on
a

Bn(0) = Bn(1). (3.26)

En e�et, pour n ≥ 2, on a d'après (3.22)

Bn(1)−Bn(0) =

∫ 1

0

B′n(t)dt = n

∫ 1

0

Bn−1(t)dt = 0.

On pose cn(x) = (−1)nBn(1− x). On a c0(x) = 1 et

c′n(x) = (−1)n+1B′n(1− x) = (−1)n+1nBn−1(1− x) = ncn−1(x).

En�n, ∫ 1

0

cn(x)dx =

∫ 1

0

(−1)nBn(1− x)dx = 0.

Par unicité de la suite des polynômes de Bernouilli dé�nis dans la proposition
3.38, on déduit l'égalité (3.24). D'autre part, pour n 6= 1, on a d'après (3.24)
et (3.26)

bn = (−1)nbn,

d'où (3.25).

3.9.2 Formule sommatoire d'Euler Mac Laurin

En premier lieu, établissons la formule sommatoire d'Euler Mac Laurin.
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Théorème 3.40 (Formule D'Euler-Mac Laurin) Soient m,n deux entiers
tels que m < n, soit r ∈ IN∗ et f ∈ Cr([m,n]). On a

n∑
k=m

f(k) =

∫ n

m

f(t)dt+
1

2
(f(m) + f(n)) +

E( r
2
)∑

p=1

b2p
(2p)!

(f (2p−1)(n)− f (2p−1)(m))

+
(−1)r+1

r!

∫ n

m

B̃r(t)f
(r)(t)dt,

(3.27)
où B̃r(t) désigne la fonction 1-périodique qui coÃ	ncide avec Br sur [0, 1[ et
E(x) désigne la partie entière de x.

Preuve On procède par récurrence sur r. Supposons r = 1. On a

B1(x) = x− 1

2
.

Pour k ∈ {m, · · · , n−1}, considérons la fonction B̃1 sur [k, k+1[. Prolongeons
la fonction B̃1 à gauche de k + 1 par continuité en posant B̃1(k + 1) = 1

2
(la

fonction ainsi obtenue est de classe C1 sur [k, k + 1], on la note B̃1 par
commodité).
Pour tout k ∈ {m, · · · , n − 1}, une intégration par parties sur [k, k + 1]
appliquée aux fonctions de classe C1 f et B̃1 conduit à∫ k+1

k

f(t)dt =

∫ k+1

k

B̃′1(t)f(t)dt =
1

2
(f(k + 1) + f(k))−

∫ k+1

k

B̃1(t)f
′(t)dt.

Donc, en sommant sur k, on obtient∫ n

m

f(t)dt =
1

2
(f(m) + f(n)) +

n∑
k=m

f(k)−
∫ n

m

f ′(t)B̃1(t)dt,

ce qui établit la formule dans le cas r = 1.
On suppose la formule démontrée à un rang r ≥ 1. Soit f ∈ Cr+1([m,n]).
D'après (3.24) et (3.26), la formule d'intégration par parties donne∫ n

m

B̃r(t)f
(r)(t)dt = [

B̃r+1(t)

r + 1
f (r)(t)]nm −

∫ n

m

B̃r+1(t)

r + 1
f (r+1)(t)dt

=
br+1

r + 1
(f (r)(n)− f (r)(m))−

∫ n

m

B̃r+1(t)

r + 1
f (r+1)(t)dt.
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On a utilisé le fait que B̃r+1(m) = Br+1(0) pour tout m ∈ IN , m ≥ 2.
Par hypothèse de récurrence, on en déduit que

n∑
k=m

f(k) =

∫ n

m

f(t)dt+
1

2
(f(m) + f(n)) +

E( r
2
)∑

p=1

b2p
(2p)!

(f (2p−1)(n)− f (2p−1)(m))

+ (−1)r+1

r!
[
br+1

r + 1
(f (r)(n)− f (r)(m))−

∫ n

m

B̃r+1

r + 1
f (r+1)(t)dt].

(3.28)
En distinguant le cas où r est pair du cas où r est impair, et en utilisant le
fait que b2p+1 = 0 pour tout p ∈ IN∗, on obtient la formule (3.27). En e�et,
si r est pair, alors r + 1 est impair et br+1 = 0. L'égalité (3.28) devient

n∑
k=m

f(k) =

∫ n

m

f(t)dt+
1

2
(f(m) + f(n)) +

E( r
2
)∑

p=1

b2p
(2p)!

(f (2p−1)(n)− f (2p−1)(m))

+ (−1)r+2

(r+1)!

∫ n

m

B̃r+1(t)f
(r+1)(t)dt

ce qui établi (3.27) dans ce cas. Si r est impair, r = 2t+1 alors r+1 = 2t+2
et (3.28) devient alors

n∑
k=m

f(k) =

∫ n

m

f(t)dt+
1

2
(f(m) + f(n)) +

t∑
p=1

b2p
(2p)!

(f (2p−1)(n)− f (2p−1)(m))

+ b2t+2

(2t+2)!
(f (2t+1)(n)− f (2t+1)(m)) + (−1)r+2

(r+1)!

∫ n

m

B̃r+1(t)f
(r+1)(t)dt],

ce qui est le résultat attendu.

La formule d'Euler Mac-Laurin a de très nombreuses applications. Elle
permet notamment d'obtenir un développement asymptotique de certaines
suites. Un exemple d'application est donné par la détermination d'un développe-
ment asymptotique de la suite (un) dé�nie par

un =
n∑
i=1

1

k
− lnn,

qui est une suite convergente (elle converge vers la constante d'Euler γ). On
a la proposition

Proposition 3.41 Il existe γ > 0 tel que pour tout r ∈ IN∗, on a quand
n→ +∞

un = γ +
1

2n
−

r∑
p=1

b2p
2p

1

n2p
+O(

1

n2r+1
). (3.29)
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Preuve La formule d'Euler-Mac Laurin appliquée à la fonction t 7→ 1

t
au

rang 2r + 1 avec m = 1 s'écrit

n∑
k=1

1

k
=

∫ n

1

dt

t
+

1

2
+

1

2n
−

r∑
p=1

b2p
2p

(
1

n2p
− 1

)
−
∫ n

1

B̃2r+1(t)

t2r+2
dt.

Comme la fonction B̃2r+1 est bornée sur IR, la fonction t 7→ B̃2r+1(t)
t2r+2 est

intégrable sur [1,+∞[. En notant

γr =
1

2
+

r∑
p=1

b2p
2p
−
∫ +∞

1

B̃2r+1(t)

t2r+2
dt,

on obtient

un = γr +
1

2n
−

r∑
p=1

b2p
2p

1

n2p
+

∫ +∞

n

B̃2r+1(t)

t2r+2
dt.

Comme 1
2n
−
∑r

p=1
b2p
2p

1
n2p → 0 quand n tend vers +∞ et

lim
n→+∞

∫ +∞

n

B̃2r+1(t)

t2r+2
dt = 0,

on en déduit que la suite (un) converge vers γr, et par unicité de la limite,
γr est indépendant de r. Ainsi, on a établi (3.29).

Une autre application de la formule sommatoire d'Euler Mac Laurin et qui
nous conduira vers la méthode de Romberg est la suivante. On considère un
entier N ∈ IN∗, (a, b) ∈ IR2 (a < b) et on pose h = b−a

N
. Soit f ∈ C∞([a, b]).

On considère la méthode des trapèzes composites pour approcher l'intégrale
de f entre a et b. On pose

Tf (h) =
h

2
(f(a) + f(b)) + h

N−1∑
k=1

f(a+ kh). (3.30)

Théorème 3.42 Soit r ∈ IN∗. Il existe des réels (ai)1≤i≤E( r
2
) tels que

∫ b

a

f(x)dx− Tf (h) =

E( r
2
)∑

i=1

aih
2i +O(hr). (3.31)

L'erreur admet donc un développement en puissances de h2.
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Preuve Appliquons la formule d'Euler Mac Laurin à la fonction g dé�nie sur
IR par g(u) = f(a+ uh) entre m = 0 et n = N . D'après (3.27), on obtient

N∑
k=0

f(a+ kh) =

∫ N

0

f(a+ uh)du+
1

2
(g(N) + g(0))

+

E( r
2
)∑

p=1

b2p
(2p)!

(g(2p−1)(N)− g(2p−1)(0)) +
(−1)r+1

r!

∫ N

0

B̃r(t)g
(r)(t)dt,

ou encore comme
∫ N

0

f(a + uh)du =
1

h

∫ b

a

f(x)dx (e�ectuer le changement

de variable x = a+ uh) et g(n)(u) = f (n)(a+ uh).hn

N∑
k=0

f(a+ kh) =
1

h

∫ b

a

f(x)dx+
1

2
(f(b) + f(a))

+

E( r
2
)∑

p=1

b2p
(2p)!

(f (2p−1)(b)− f (2p−1)(a))h2p−1

+ (−1)r+1

r!

∫ N

0

B̃r(t)f
(r)(a+ th)hr(t)dt.

(3.32)

Comme la fonction B̃r est bornée sur [0, N ] (car 1-périodique) et comme f (r)

est bornée sur [a, b] (car continue sur cette intervalle), on obtient l'inégalité :

|(−1)r+1

r!

∫ N

0

B̃r(t)f
(r)(a+ th)hrdt| ≤ max

x∈[a,b]
|f (r)(x)| max

x∈[a,b]
|B̃r(t)||

hr−1

r!
.

donc on a

|(−1)r+1

r!

∫ N

0

B̃r(t)f
(r)(a+ th)hrdt| = O(hr−1).

On en déduit en multipliant les deux membres de l'égalité (3.32) par h que

Tf (h) =

∫ b

a

f(x)dx+

E( r
2
)∑

p=1

aph
2p +O(hr), (3.33)

avec

ap =
b2p

(2p)!
(f (2p−1)(b)− f (2p−1)(a)),

ce qui établit que le reste admet un développement en puissances de h2.
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3.9.3 Description de la méthode de Romberg

D'après l'étude menée sur la méthode composites des trapèzes, et précisé-
ment l'estimation de l'erreur obtenue dans (3.7) (en supposant que b− a est
de l'ordre de quelques unités), pour assurer une précision de 10−6, il su�t
que le pas h soit de l'ordre de 10−3. Un tel calcul nécessitera une boucle
comportant au moins plusieurs milliers d'itérations et le calcul sera prop-
ice à des propagations d'erreur d'arrondis. La méthode de Romberg permet
d'accélérer la vitesse de convergence de de la méthode des trapèzes. La
méthode de Romberg repose sur le procédé d'extrapolation de Richardson.
L'idée du procédé est de combiner plusieurs développements de Taylor d'une
fonction v au voisinage de 0 pour déterminer v(0)avec l'erreur la plus faible
possible. Exemple : si v(h) = v(0) + c1h + O(h2), on a aussi pour un réel
r ∈]0, 1[, �xé (souvent r = 1

2
) v(rh) = v(0) + c1rh+O(h2). On a alors

v(rh)− rv(h)

1− r
= v(0) +O(h2).

On obtient ainsi une approximation de v(0) à un O(h2) près au lieu d'un
O(h) près. Cette combinaison linéaire permet donc d'obtenir une meilleure
valeur approchée de v(0).
Le théorème 3.42 permet d'écrire en remplaçant r par 2n+ 1 (n ∈ IN∗) :

Tf (h) =

∫ b

a

f(t)dt− c2h2 − c4h4 + · · · − c2nh2n +O(h2n+1). (3.34)

La méthode de Romberg débute par le calcul des approximations intégrales
de f pour les pas h

2
, h

4
, h

8
· · · que l'on dispose dans une colonne. On observe

que l'on passe facilement de Tf (h) à Tf (h2 ) (où Nh = b − a) en ajoutant
les images des abscisses intermédiaires situées au milieu des intervalles de
subdivisions : Tf (h2 ) = 1

2
(Tf (h) +Mh) où

Mh = h
(
f(a+ h

2
) + f(a+ 3h

2
) + · · ·+ f(a+ (2N−1)h

2
)
)
. Le tableau de la

méthode de Romberg se construit à partir de la première colonne dont les
éléments sont notés T00 = Tf (h), T10 = Tf (

h
2
), · · · , Tm0 = Tf (

h
2m

) m ∈ IN∗.
On pose alors pour n = 1, · · · ,m

Tn,1 =
4Tn,0 − Tn−1,0

4− 1
.

Appliquant cette formule, d'après (3.34), on obtient par exemples

T11 =

∫ b

a

f(t)dt+
c4
4
h4 +

5

16
c6h

6 · · ·+O(h2n+1),
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T21 =

∫ b

a

f(t)dt+
c4
4

(
h

2
)4 +

5

16
c6(

h

2
)6 + · · ·+O(h2n+1),

Ainsi, on obtient une valeur approchée de
∫ b
a
f(t)dt à un O(h4) près dans

le premier cas et à un O((h
2
)4) près dans le second cas. On construit de

la sorte la deuxième colonne du tableau : elle est constituée des éléments
T11, T21, · · · , Tm1. A�n d'améliorer la précision de l'approximation, on peut
évaluer

T22 :=
24T21 − T11

24 − 1
=

∫ b

a

f(t)dt+O(h6).

On peut généraliser ce qui précède en introduisant la formule de récurrence
pour k = 0, · · · ,m− 1, n = k + 1, · · · ,m

Tn,k+1 =
22k+2Tn,k − Tn−1,k

4k+1 − 1
,

qui permet de déterminer la colonne k+1 du tableau. La dernière valeur Tm,m
fournit une valeur approchée de l'intégrale à O(h2m+2) près. En pratique, il
est inutile de calculer Tm,m.

4 Résolution de l'équation f (x) = 0

4.1 Introduction

Dans toute la première partie, on considére une fonction f dé�nie sur [a, b] à
valeurs réelles, continue sur [a, b] telle que f(a).f(b) ≤ 0. D'après le théorème
des valeurs intermédiaires, on sait que f admet au moins une racine dans
[a, b], notée l.
Mis à part quelque cas simple, par l'exemple les équations ax2 + bx + c = 0
et ax3 + bx2 + cx+ d = 0, on ne peut pas résoudre algébriquement l'équation
f(x) = 0.
En pratique, on cherche donc une solution approchée de la solution l en con-
struisant une suite numérique (un) qui converge vers l. On se propose ici de
donner plusieurs méthodes de résolution de l'équation f(x) = 0. Une méth-
ode déjé abordée en L1 est la méthode de dichotomie, mais cette méthode
se révéle peu e�cace, car assez lente (la convergence est �géométrique� de
raison 1

2
).

Nous présentons ici diverses méthodes de type point �xe, dont la méthode des
approximations successives. Cette dernière repose sur le théorème du point
�xe. En pratique, on remplace l'équation f(x) = 0 par une équation équiva-
lente, par exemple x = x − f(x) et on cherche les points �xes de l'équation
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g(x) = x avec g(x) = x − f(x). D'autres méthodes seront présentées, par
exemples la méthode de la corde ou encore la méthode de Newton. Nous
montrerons que la méthode de Newton se révéle la plus e�cace lorsqu'elle
converge, la convergence étant quadratique.
Les problémes posés par l'introduction de telles suites numériques sont les
suivants :
1. La suite (xn) converge-t-elle ?
2. Si la suite converge, sa limite est-elle l ?
Si la réponse à l'une de ces questions est non, alors la méthode considérée
n'est pas satisfaisante.
Un autre probléme se pose : si on veut calculer la solution à ε prés, combien
faut-il d'itérations pour y parvenir, et comment arrêter les itérations dés que
cette condition est remplie ?

Dans une seconde partie, on envisage d'étudier le cas ou f est dé�nie sur
un ouvert d'un espace vectoriel normé complet (éventuellement de dimen-
sion in�nie) à valeurs dans un espace vectoriel normé Y . On généralisera la
méthode de Newton étudié dans le cas de la dimension un.

4.2 La méthode de dichotomie

On considère une fonction f dé�nie sur [a, b] à valeurs réelles, continue sur
[a, b]. Soit (un) une suite de [a, b] convergeant vers l. On rappelle (voir cours
de topologie) que d'une part, l ∈ [a, b] et que d'autre part, la continuité de f
entraîne que

lim
n→+∞

f(un) = f( lim
n→+∞

un).

On suppose dans cette sous-section ainsi que dans la suivante que la fonction
f posséde une unique racine notée l dans l'intervalle [a, b]. La méthode de
dichotomie consiste à introduire à chaque étape le milieu du segment [a, b],

c =
a+ b

2
, puis à déterminer l'intervalle contenant la racine de f en ayant

recours au théorème des valeurs intermédiaires. L'algorithme est donc le
suivant : on pose

a0 = a, b0 = b et c0 =
a+ b

2
.

Si f(a0).f(c0) ≤ 0, alors d'après le théorème des valeurs intermédiaires l ∈
[a0, c0], et on pose a1 = a0 et b1 = c0, sinon, l ∈ [c0, b0] et on pose a1 = c0 et
b1 = b0.
Pour n ≥ 1, supposons déterminé les réels a0, · · · , an−1, b0, · · · , bn−1.
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À l'étape n, on pose

cn−1 =
an−1 + bn−1

2
.

Si f(an−1).f(cn−1) ≤ 0, alors l ∈ [an−1, cn−1], et on pose an = an−1 et
bn = cn−1, sinon, l ∈ [cn−1, bn−1] et on pose an = cn−1 et bn = bn−1.

Montrons que la méthode de dichotomie converge.

Théorème 4.1 Les suites de réels (an) et (bn) sont adjacentes, elles con-
vergent vers la solution de l'équation f(x) = 0. De plus, la convergence est
"géométrique". Précisément, on a

|an − l| ≤
|a− b|

2n
∀ n ∈ IN et |bn − l| ≤

|a− b|
2n

∀ n ∈ IN.

Preuve
Supposons que f est strictement négative sur [a, l] et strictement positive sur
[l, b]. Par récurrence, on montre que

an ≤ bn ∀n ∈ IN. (4.1)

En e�et, on a a0 < b0, et si on suppose an−1 ≤ bn−1 pour n ≥ 1. On obtient
(si l ∈ [an−1, cn−1]))

an − bn = an−1 −
an−1 + bn−1

2
=
an−1 − bn−1

2
< 0,

ou (si l ∈ [cn−1, bn−1])

an − bn =
an−1 + bn−1

2
− bn−1 =

an−1 − bn−1
2

< 0.

Donc an ≤ bn pour tout n ∈ IN . Par ailleurs, on a établi que

an − bn =
an−1 − bn−1

2
, ∀n ∈ IN.

Par récurrence, on en déduit que

an − bn =
a− b

2n
∀ n ∈ IN. (4.2)

De plus, d'après (4.1) et (4.2), on en déduit que les suites (an) et (bn) con-
vergent vers la même limite notée l̂. En e�et, la suite (an) est croissante (et
(bn) est décroissante) puisque par dé�nition de (an), soit

an+1 − an = 0,
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soit

an+1 − an =
an + bn

2
− an =

bn − an
2

.

De (4.1), on déduit que (an) est croissante, majorée par b0 (respective-
ment, (bn) est décroissante et minorée par a0). Par conséquent, elles con-
vergent toutes deux, et compte tenu de (4.2), elles convergent vers la même
limite.
De plus, comme f(an) ≤ 0 pour tout n, on obtient par passage à la limite
limn→+∞ f(un) = f(l̂) ≤ 0. De même, comme f(bn) ≥ 0, par passage à la
limite, on obtient f(l̂) ≥ 0. Donc f(l̂) = 0, et comme f admet une unique
racine dans [a, b], on a l = l̂. D'autre part, comme l ∈ [an, bn], d'après (4.2),
on déduit que

|an − bn| = |an − l|+ |bn − l| ≤
|a− b|

2n
∀ n ∈ IN.

Donc on a |an − l| ≤ |a−b|
2n

∀ n ∈ IN et |bn − l| ≤ |a−b|
2n

∀ n ∈ IN. La
convergence de (an) et (bn) vers l est donc �géométrique� (la convergence est

de l'ordre de
1

2n
). La preuve du théorème 4.1 est achevée.

4.3 La méthode des approximations successives

Dans cette partie ainsi que dans ce chapitre, on sera amené à utiliser les
lemmes suivants

Lemme 4.2 On considère une suite de nombre réels (un) satisfaisant la con-
dition suivante : il existe k ∈]0, 1[ tel que

|un+1| ≤ k|un|, ∀n ∈ IN. (4.3)

Alors la suite (un) converge vers 0 et la vitesse de convergence est géométrique.

Preuve Montrons par récurrence que

|un| ≤ kn|u0|, ∀n ∈ IN.

Le résultat est vrai pour n = 0, puisque |u0| ≤ k0|u0|.
Supposons le résultat est vrai au rang n. On a alors d'après (4.3) et par
hypothèse de récurrence :

|un+1| ≤ k|un| ≤ k.kn|u0|.

Le résultat est donc vrai pour tout n ∈ IN . Comme k ∈]0, 1[, on en déduit
que kn tend vers 0 quand n tend vers l'in�ni, et il en résulte que (un) tend
vers 0 et la vitesse de convergence est géométrique.
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Lemme 4.3 On considère une suite de nombre réels (un) positifs satisfaisant
la condition suivante : il existe C > 0 tel que

un+1 ≤ C|un|2, ∀n ∈ IN. (4.4)

Alors on a
un ≤ C2k−1u2

k

0 .

Preuve E�ectuons un raisonnement par récurrence sur n. Le résultat est
vrai pour n = 0. Supposons le vrai au rang n (n ≥ 0). D'après (4.4) et
l'hypothèse de récurrence, on obtient

un+1 ≤ Cu2n ≤ C
(
C2n−1u2

n

0

)2
= C2n+1−1u2

n+1

0 .

Le résultat est donc vrai pour tout n ∈ IN .

4.3.1 Le théorème du point �xe

Dé�nition 4.4 Soit f une fonction dé�nie sur [a, b] à valeurs réelles. On
dit que α ∈ [a, b] est un point �xe de f si f(α) = α.

Dé�nition 4.5 Soit f une fonction dé�nie sur [a, b] à valeurs réelles. On
dit que f est une fonction contractante si il existe un réel k ∈]0, 1[ tel que

|f(x)− f(y)| ≤ k|x− y| ∀ (x, y) ∈ [a, b]2. (4.5)

On rappelle le résultat suivant établi dans le cours de topologie.
Soit (un) une suite d'un espace vectoriel normé E, et F une partie fermée de
E. Si un ∈ F pour tout n ∈ IN et si (un) converge vers l ∈ E, alors l ∈ F .

Le théorème du point �xe joue une très grand rôle en analyse. La méthode
des approximations successives présentées ici repose sur ce théorème dont on
donne l'énoncé et la démonstration.

Théorème 4.6 (théorème du point �xe)
Soit f une fonction dé�nie sur [a, b] à valeurs réelles satisfaisant les deux
conditions suivantes :

� f([a, b]) ⊂ [a, b] (on dit que [a, b] est stable par f).

� f est une fonction contractante sur [a, b] au sens de la dé�nition 4.5.

Alors il existe un unique α ∈ [a, b] tel que f(α) = α. De plus, la suite (un)
dé�nie par un+1 = f(un), u0 ∈ [a, b] converge vers α.
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Preuve
S'il existe un point �xe de f alors il est unique. En e�et, soient x1 et x2 deux
points �xes de f tels que x1 6= x2. Alors, comme f est contractante, on a

|f(x1)− f(x2)| ≤ k|x1 − x2|,

donc

k ≥ |f(x1)− f(x2)|
|x1 − x2|

= 1.

Contradiction (k ∈]0, 1[).
Pour montrer l'existence du point �xe, nous allons montrer que la suite (un)
dé�nie par un+1 = f(un) est une suite de Cauchy. Remarquons que compte-
tenu de (4.5)

|un+1 − un| = |f(un)− f(un−1)| ≤ k|un − un−1| ∀n ≥ 1.

D'après le lemme 4.2 appliqué à la suite (|un+1 − un|), on obtient

|un+1 − un| ≤ kn|u1 − u0|, ∀n ∈ IN.

Par inégalité triangulaire, on en déduit que pour p ∈ IN et n ∈ IN , on a

|un+p − un| ≤
n+p−1∑
i=n

|ui+1 − ui| ≤
n+p−1∑
i=n

ki|u1 − u0|.

Comme la série
∑
kn converge (car 0 < k < 1), on en déduit que (un) est

une suite de Cauchy dans IR, espace complet. La suite (un) converge vers α,
et comme [a, b] est fermé, on a α ∈ [a, b].
Comme f est continue, on a

lim
n→∞

un+1 = α = lim
n→∞

f(un) = f( lim
n→∞

un) = f(α).

On obtient que α est un point �xe de f . Ceci achève la preuve du théorème
4.6.

Remarque 4.7 On peut établir un résultat analogue dans un cadre beaucoup
plus général que celui donné dans le théorème 4.6, par exemple dans le cadre
des espaces métriques complets.
Ici, soit E un espace vectoriel normé complet et φ une application dé�nie
sur E à valeurs dans E (E est un espace métrique pour la distance d(x, y) =
‖x−y‖). On suppose que φ est contractante, c'est-à-dire qu'il existe k ∈]0, 1[
tel que

‖φ(x)− φ(y)‖E ≤ k‖x− y‖E ∀ (x, y) ∈ E2.
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Alors il existe un unique α ∈ E tel que φ(α) = α. De plus, la suite (un)
dé�nie par un+1 = φ(un), u0 ∈ E converge vers α.
La démonstration de ce résultat très important est identique à celle donnée
dans le théorème 4.6. Pour l'obtenir, il su�t de remplacer la norme sur IR
par celle sur E.

Etudions le cas particuliers où f est de classe C1 sur [a, b].

Proposition 4.8 Soit f ∈ C1([a, b]). On suppose que

k := max
x∈[a,b]

|f ′(x)| < 1.

Alors f est contractante sur [a, b].

Preuve D'après le théorème des accroissements �nis appliqué entre x et y
(x, y) ∈ [a, b]2, on a

|f(y)− f(x)| = |f ′(c)|.|y − x|, c ∈]a, b[.

Compte-tenu de l'hypothése, on en déduit que

|f(y)− f(x)| ≤ k|y − x| ∀ (x, y) ∈ [a, b]2.

4.3.2 Résolution de l'équation f(x) = 0 par la méthode du point
�xe

Exemple Considérons l'équation x3− x2− 1 = 0. Une étude de la fonction
f(x) = x3 − x2 − 1 permet de montrer que cette équation admet une unique
racine dans [1, 2]. En e�et, la dérivée de f est donnée par f ′(x) = 3x2 −
2x et f ′ est de signe strictement positif sur [1, 2], donc la fonction f croît
strictement sur [1, 2]. Comme f(1).f(2) = −3 < 0, on déduit du théorème
des valeurs intermédiaires qu'il existe un unique élément l ∈ [1, 2] tel f(l) = 0.
Transformons l'équation de telle sorte à l'écrire comme un problème de point
�xe. Plusieurs transformations sont possibles. On peut par exemple écrire
l'équation sous la forme

x = x3 − x2 + x− 1

ou encore
x = (x2 + 1)

1
3 .

Étudions les solutions de l'équation x = (x2 + 1)
1
3 . Posons g(x) = (x2 + 1)

1
3

et montrons que le théorème du point �xe 4.6 s'applique sur [1, 2] à g. La
fonction g est croissante sur [1, 2], on a donc

g([1, 2]) = [g(1), g(2)].
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Or, g(1) = 2
1
3 ∈ [1, 2] et g(2) = 5

1
3 ∈ [1, 2], donc la premiére hypothése du

théorème 4.6 est bien satisfaite.
D'autre part, on a

g′(x) =
2

3
x(x2 + 1)−

2
3 .

Pour tout x ∈ [1, 2], on a

|g′(x)| ≤ 2

3
22−

2
3 < 1 ∀ x ∈ [1, 2].

D'après le théorème 4.6 et la proposition 4.8, on déduit que la suite (xn)
dé�nie par x0 ∈ [1, 2] et xn+1 = g(xn) converge vers l'unique point �xe de g
dans [1, 2]. Ce point �xe n'est autre que la solution de l'équation f(x) = 0.

Remarque 4.9 Un intérêt du théorème 4.6 est que la convergence est as-
surée pour un choix quelconque de x0 dans [a, b]. Il n'en va pas de même dans
la méthode de Newton que nous aborderons ultérieurement, qui peut s'avérer
divergente si x0 est choisi trop loin du point �xe.

Soit ε > 0. On peut se demander combien d'itérations sont nécessaires
pour obtenir une estimation de l'erreur en := |xn− l| plus petite que ε. C'est
l'objet de la proposition :

Proposition 4.10 Soit la suite (un) dé�nie dans le théorème 4.6. Alors le
nombre d'itérations nécessaires pour que |un − l| ≤ ε est donné par

n ≥ ln(ε)− ln |u0 − l|
ln k

.

Preuve
On a

|un − l| = |f(un−1)− f(l)| ≤ k|un−1 − l|.
On en déduit par récurrence que

|un − l| ≤ kn|u0 − l|, ∀ n ∈ IN.

Donc une condition su�sante pour obtenir que |un − l| ≤ ε est que

kn|u0 − l| ≤ ε.

Cette condition équivaut à

n ln k + ln |u0 − l| ≤ ln(ε),

soit

n ≥ ln(ε)− ln |u0 − l|
ln k

.
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Dé�nition 4.11 Soit f une fonction de classe C1([a, b]) et α un point �xe
de f . On dit que α est un point attractif si

|f ′(α)| < 1.

On dit que α est répulsif si
|f ′(α)| > 1.

L'une des di�cultés pour appliquer le théorème du point �xe réside dans la
détermination d'un intervalle stable par f . La proposition suivante donne
une réponse à cette interrogation :

Proposition 4.12 Soit g : [a, b] → IR une fonction de classe C1 sur [a, b].
Soit l ∈ [a, b] une point �xe de g. On suppose que

|g′(l)| < 1.

Alors il existe un intervalle [α, β] ⊂ [a, b] contenant l pour lequel la suite
dé�nie par x0 ∈ [a, b] et xn+1 = g(xn) converge vers l.

Preuve
On suppose que 0 < g′(l) < 1. Comme g′ est continue au point l, il existe un
intervalle [α, β] contenant l tel que

0 < g′(x) < 1 ∀ x ∈ [α, β].

En e�et, par continuité de g′ au point x = l, on a :

∀ ε > 0, ∃ η > 0 |x− l| ≤ η, |g′(x)− g′(l)| < ε.

On choisit alors ε > 0 assez petit pour que

0 < g′(l)− ε < g′(x) < g′(l) + ε < 1, ∀ x ∈ [l − η, l + η].

On pose alors α = l − η et β = l + η. Reste à montrer que [α, β] est stable
par g. On a d'après le théorème des accroissements �nis appliqué entre α et
l

l − g(α) = g(l)− g(α) = g′(γ)(l − α), γ ∈]α, l[.

Comme g′(γ) < 1, on a
l − g(α) ≤ (l − α),

soit α ≤ g(α). On montre de même que β ≥ g(β). Comme g est croissante
sur [α, β], on a bien g([α, β]) ⊂ [α, β]. D'autre part, pour tout x ∈ [α, β], on
a |g′(x)| < 1. D'après la proposition 4.8, la fonction g est donc contractante
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sur cet intervalle. On peut alors appliquer le théorème du point �xe à g
restreint à [α, β] et obtenir ainsi la conclusion désirée.
Le cas −1 < g′(l) < 0 se traite de maniére analogue.

Etudions à présent le cas |g′(l)| > 1. On a la proposition :

Proposition 4.13 Soit l une solution de l'équation g(x) = x. Si g′ est
continue au voisinage de l et si |g′(l)| > 1, alors la suite dé�nie par xn+1 =
g(xn), x0 6= l ne converge pas vers l.

Preuve Supposons x0 6= l. Soit [α, β] un intervalle contenant l et tel que

k := min
x∈[α,β]

|g′(x)| > 1.

Un tel intervalle existe puisque g′ est continue au point l et |g′(l)| > 1. Soit
n ∈ IN . Alors, seules deux éventualités sont possibles :
ou bien xn /∈ [α, β] ou xn ∈ [α, β] et alors d'après le théorème des accroisse-
ments �nis appliqué à g entre xn et l, on obtient

|g(xn)− g(l)| = |g′(η)(xn − l)|, η ∈]xn, l[∪]l, xn[.

soit
|xn+1 − l| ≥ k|xn − l|.

On en déduit que l'erreur en = |xn− l| ne peut pas tendre vers 0. En e�et, ou
bien il existe une in�nité d'entiers n tels que xn /∈ [α, β] et par conséquent,
(xn) ne converge pas vers l, ou alors il existe un entier n0 tel que pour tout
n ≥ n0, on a

|xn+1 − l| ≥ k|xn − l|,
et dans ce cas, on déduit par récurrence que

|xn − l| ≥ kn−n0|xn0 − l|,
et par conséquent, la suite (xn) ne converge pas vers l puisque kn−n0 tend
vers +∞ quand n tend vers l'in�ni.

Récapitulons la marche à suivre a�n d'étudier des suites de la forme un+1 =
g(un) (g dérivable) en utilisant la méthode du point �xe. Soit l un point �xe
de g.

� Si |g′(l)| > 1, ou on élimine la méthode ou on peut travailler avec g−1

puisque

(g−1)′(l) =
1

g′(g−1(l))
=

1

g′(l)
< 1.

� Si |g′(l)| < 1, il faut trouver un intervalle [a, b] stable par la fonction g.

� Si |g′(l)| = 1, on peut avoir convergence ou divergence.
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4.4 La méthode de la corde

4.4.1 Fonctions convexes

On rappelle quelques résultats concernant les fonctions convexes.

Dé�nition 4.14 Soit f : I → IR. On dit que f est convexe sur I si pour
tout (x, y) ∈ I2, pour tout t ∈ [0, 1], on a

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (4.6)

On dit que f est strictement convexe sur I si pour tout (x, y) ∈ I2, pour tout
t ∈]0, 1[, on a

f(tx+ (1− t)y) < tf(x) + (1− t)f(y).

Lorsqu'on inverse le sens des inégalités précédentes, on dit que f est concave
sur I.

De la dé�nition 4.14, on déduit la proposition :

Proposition 4.15 Soit f une fonction convexe dé�nie sur [a, b], et s, t, u ∈
[a, b] tels que s < t < u. Alors on a :

f(t)− f(s)

t− s
≤ f(u)− f(t)

u− t
. (4.7)

Si on suppose que f est dérivable sur I, on peut caractériser la convexité
gràce à la dérivée première.

Théorème 4.16 Soit f : I → IR une fonction dérivable sur I. La fonction
f est convexe si et seulement si

f(y) ≥ f(x) + f ′(x)(y − x), ∀ (x, y) ∈ I2. (4.8)

La fonction f est strictement convexe si et seulement si

f(y) > f(x) + f ′(x)(y − x), ∀ (x, y) ∈ I2. (4.9)

La fonction f est concave si et seulement si les inégalités dans (4.8) et (4.9)
sont inversées.

Démonstration Si f est convexe, on peut écrire

f(x+ t(y − x)) ≤ (1− t)f(x) + tf(y),
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soit, pour t 6= 0

f(x+ t(y − x))− f(x)

t
≤ f(y)− f(x),

inégalité que l'on peut réecrire sous la forme

f(x+ t(y − x))− f(x)

t(y − x)
(y − x) ≤ f(y)− f(x). (4.10)

Or, comme f est dérivable au point x, on a

lim
t→0

f(x+ t(y − x))− f(x)

t(y − x)
= f ′(x).

Faisant tendre t vers 0 dans l'inégalité (4.10), on obtient

lim
t→0

f(x+ t(y − x))− f(x)

t(y − x)
(y − x) ≤ f(y)− f(x),

d'où
f ′(x)(y − x) ≤ f(y)− f(x).

Réciproquement, supposons (4.8) satisfaite. Alors, remplaéant x par y +
t(x− y) dans (4.8), on obtient pour t ∈]0, 1[

f(y) ≥ f(y + t(x− y))− tf ′(y + t(x− y))(x− y).

De même, remplaéant y par x et x par y + t(x− y) dans (4.8), on obtient

f(x) ≥ f(y + t(x− y)) + (1− t)f ′(y + t(x− y))(x− y),

et il su�t d'additionner les deux inégalités ci-dessus, multipliées respective-
ment par (1− t) et t pour obtenir (4.18).
On admettra (4.9).

Remarque 4.17 Le théorème 4.16 exprime que la courbe représentative de f
est au-dessus de la tangente au point d'abscisse x0, x0 quelconque appartenant
à I.

Exemple d'application Considérons la fonction f(x) = lnx pour x > 0.
D'après le théorème 4.16, pour établir la concavité de f sur ]0,+∞[, il su�t
de montrer que

1

x
(y − x) ≥ ln y − lnx, ∀ (x, y) ∈]0,+∞[2,
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soit encore
ln(

y

x
) ≤ y

x
− 1 ∀ (x, y) ∈]0,+∞[2.

On considère la fonction auxiliaire g dé�nie par

g(u) = ln(
u

x
)− u

x
+ 1, ∀u > 0.

On a g′(u) = 1
u
− 1

x
. g admet un unique maximum atteint en u = x, et

g(u) = 0. Donc g(u) ≤ 0 pour tout u > 0. Il en résulte que f est concave.

On admettra le théorème suivant qui sera établi dans le chapitre consacré
aux développements limités.

Théorème 4.18 Soit f une fonction deux fois dérivable sur I. Alors f est
convexe sur I si et seulement si

f ′′(x) ≥ 0, ∀x ∈ I.

Si
f ′′(x) > 0, ∀x ∈ I

alors f est strictement convexe sur I.

Exemples 1. La fonction exponentielle est dérivable sur IR, de dérivée sec-
onde égale à ex. Cette fonction est donc strictement convexe sur IR.
2. Les fonctions de la forme ax2+bx+c avec a > 0 sont strictement convexes
sur IR. En e�et, on a (ax2 + bx+ c)(2) = 2a > 0.
3. On considère la fonction dé�nie sur IR par f(x) = x2 + 2 sin x. Montrons
que f est convexe sur IR. La fonction f est deux fois dérivable sur IR et on
a pour tout x ∈ IR l'égalité f ′′(x) = 2 − 2 cosx. Comme f ′′(x) ≥ 0 sur IR,
on déduit du théorème 4.18 que f est convexe sur IR.

De la convexité de f sur IR, on peut déduire l'inégalité

sinx ≥ x− x2

2
, ∀x ∈ IR. (4.11)

En e�et, la tangente (T ) à la courbe représentative de f au point x = 0 est
donnée par y = 2x. Or, d'après le théorème 4.16, la courbe représentative
de f est au-dessus de la tangente (T ). On en déduit que

x2 + 2 sinx ≥ 2x,

soit (4.11).
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4.4.2 Convergence de la méthode de la corde

Soit f une fonction de classe C2 sur [a, b], convexe et strictement croissante
sur [a, b] tel que f(a).f(b) < 0. On considère le segment dont les extrémités
sont les points A(a, f(a)) et B(b, f(b)). Ce segment coupe l'axe des abscisses
au point de coordonnée (x1, 0). Calculons x1. L'équation de la droite (AB)
est donnée par

y = τ(x− a) + f(a),

avec τ =
f(b)− f(a)

b− a
. x1 satisfait

0 = τ(x1 − a) + f(a),

donc x1 = a − f(a)

τ
. On peut alors construire une suite par récurrence

en procédant de la faéon suivante : étant donné xn, le terme xn+1 est
l'intersection de la droite passant par An(xn, f(xn)) et le point B(b, f(b)).
La suite récurrente ainsi dé�nie est x0 = a

xn+1 = xn −
f(xn)

τn

(4.12)

où

τn =
f(b)− f(xn)

b− xn
.

On peut montrer le théorème

Théorème 4.19 Soit f ∈ C2([a, b]), convexe et strictement croissante sur
[a, b] tel que f(a).f(b) < 0. Alors la suite (xn) converge vers α, unique zéro
de f dans [a, b], et la convergence est géométrique.

Preuve
Etape 1 La suite (xn) converge vers α.
Montrons par récurrence sur k que xk ≤ α pour tout k.
Le résultat est vrai pour k = 0 puisque x0 = a. Supposons xk ≤ α. On a

xk+1 − α = xk − α−
f(xk)(b− xk)
f(b)− f(xk)

=
f(b)(xk − α) + f(xk)(α− b)

f(b)− f(xk)
. (4.13)

Comme f est convexe et xk ≤ α < b, on a d'après la proposition 4.15

f(α)− f(xk)

α− xk
≤ f(b)− f(α)

b− α
.

89



De cette inégalité, et comme f(α) = 0, on déduit que

f(b)(xk − α) + f(xk)(α− b) ≤ 0.

Donc d'après (4.13), on déduit que xk+1 ≤ α. Par récurrence, on a donc
xk ≤ α pour tout k. Comme f est croissante et α est un zéro de f , on en
déduit que

f(xk) ≤ 0, ∀ k ∈ IN.
Il résulte de (4.12) que (xn) est croissante et majorée par α, donc elle converge
vers l. On en déduit que limn→+∞ τk existe et vaut

f(b)−f(l)
b−l 6= 0.

Passons à la limite dans (4.12). On obtient

l = l − f(l)

limn→+∞ τk
,

donc f(l) = 0, et comme f admet pour unique racine α, on a l = α.
Etape 2 Estimation de l'erreur εk := α− xk.

Compte-tenu de l'étape 1, on a εk ≥ 0 pour tout k ≥ 0. Par ailleurs, on
a d'après (4.12)

εk+1 = εk +
f(xk)

τk
. (4.14)

D'autre part, la suite (τk) est bornée puisqu'elle converge et elle est composée
de termes positifs. Il existe M > 0 tel que

0 ≤ τk ≤M, ∀ k ≥ 0. (4.15)

D'après le théorème des accroissements �nis entre xk et α, on a

f(xk)− f(α) = (xk − α)f ′(θk), θk ∈]xk, α[.

Puisque f ′ est croissante (car f est convexe et deux fois dérivable)), il en
résulte que

−f(xk)

εk
= f ′(θk) ∈ [f ′(a), f ′(α)] (4.16)

De (4.14) et (4.16), on déduit que

εk+1 = εk +
f(xk)

τkεk
εk = εk(1−

f ′(θk)

τk
).

Minorons
f ′(θk)

τk
. Comme f est convexe sur [a, b] et de classe C2, la fonction

f ′ est croissante. D'après (4.16) et (4.15), on obtient :

f ′(θ)

τk
≥ f ′(a)

M
, ∀ k ≥ 0.
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On déduit que pour tout k ≥ 0, on a

0 ≤ εk+1 ≤ (1− f ′(a)

M
)εk.

D'après le lemme 4.2, on déduit que

0 ≤ εk ≤ (1− f ′(a)

M
)kε0, ∀ k ∈ IN. (4.17)

Donc la convergence de (xk) vers α est du même ordre que celle de

(1− f ′(a)

M
)k. La convergence est géométrique, et la preuve du théorème est

achevée.

4.5 La méthode de Newton

4.5.1 Description et convergence de la méthode

Soit f une fonction dé�nie sur [a, b] à valeurs réels, de classe C1 et convexe
sur [a, b] admettant une racine l. Soit x0 ∈ [a, b]. On considère la tangente
(T) à la courbe représentative de f au point d'abscisse x0. Son équation est
donnée par

y = f(x0) + f ′(x0)(x− x0).
Elle coupe l'axe des abscisses au point x1. Le point de coordonnée (x1, 0)
appartient à (T), on en déduit que

x1 = x0 −
f(x0)

f ′(x0)
.

On peut alors considèrer la tangente à la courbe représentative de f au point
x1 et raisonner comme précédement. Réitirant ce procédé, on construit une
suite numérique (xn) dont on peut penser qu'elle converge vers l.
La suite générée ici est donnée par

xn+1 = xn −
f(xn)

f ′(xn)
. (4.18)

Si (xn) converge vers l et si f ′(l) 6= 0, on alors par passage à la limite

l = l − f(l)

f ′(l)
,

donc f(l) = 0.
La méthode de Newton est convergente si x0 est choisi assez proche de l.
C'est ce qu'exprime le théorème suivant :
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Théorème 4.20 Soit f de classe C2 sur [a, b]. On suppose qu'il existe l ∈
]a, b[ tel que f(l) = 0 et f ′(l) 6= 0.
Alors si |x0 − l| est assez petit, la suite (xn) est bien dé�nie et converge vers
l. De plus, il existe une constante C > 0 telle que pour tout n

|xn − l| ≤
1

C
(C|x0 − l|)2

n

. (4.19)

Preuve
Comme f ′(l) 6= 0, par continuité de f ′ au point l, on déduit qu'il existe η > 0
tel que f ′(x) 6= 0 sur J :=]− η + l, l + η[. En e�et,

∀ ε > 0, ∃η > 0, |x− l| ≤ η, |f ′(x)− f ′(l)| < ε.

Il en résulte que pour tout x ∈ J :=]− η + l, l + η[, on a

−ε+ f ′(l) < f ′(x) < ε+ f ′(l).

Supposons f ′(l) > 0. Il su�t alors de choisir ε assez petit de telle sorte que
−ε+ f ′(l) > 0 pour obtenir la stricte positivité de f ′ sur J . On raisonne de
manière analogue pour traiter le cas f ′(l) < 0.
Quitte à travailler avec −f , on peut supposer que f ′(x) > 0 sur J . Posons

φ(x) = x− f(x)

f ′(x)
.

On a l'égalité

φ(x)− l = x− l − f(x)− f(l)

f ′(x)
.

D'après la formule de Taylor-Lagrange appliquée à f entre x et l, on obtient

f(l)− f(x) = f ′(x)(l − x) +
f ′′(ηx)(l − x)2

2
, ηx ∈]l, x[∪]x, l[.

Il en résulte que

|φ(x)− l| = |f
′′(ηx)|

2|f ′(x)|
|x− l|2

puis que

|φ(x)− l| ≤
maxx∈[a,b] |f ′′(x)|

2|f ′(x)|
|x− l|2 ≤ C|x− l|2 (4.20)

avec C = max
x∈[a,b]

|f ′′(x)|}2 min
x∈J

f ′(x). Quitte à réduire η, on peut supposer

η < 1
C
. Alors si x ∈ J , on a φ(x) ∈ J puisque |φ(x) − l| ≤ Cη2 < η. On a

donc établi que pour x0 ∈ J , la suite xn+1 = φ(xn) est bien dé�nie (et xn ∈ J
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pour tout n).
Posons εk = |xk − l|. D'après (4.20), il existe une constante C > 0 telle que

εk+1 ≤ Cε2k ∀ k ∈ IN. (4.21)

D'après le lemme 4.3, on déduit que

εk ≤ C2k−1ε2
k

0 ∀ k ≥ 0.

On en déduit que si
C|x0 − l| < 1,

alors (xn) converge vers l (puisqu'alors (C|x0− l|)2
n
tend vers 0 quand n tend

vers l'in�ni), et de plus, l'inégalité (4.19) est établie. Ainsi, pour assurer la
convergence de la méthode, il est nécessaire que la donnée initiale soit assez
proche de l.

Remarque 4.21 La méthode de Newton ne converge pas nécessairement
vers la solution de l'équation f(x) = 0, comme l'indique le théorème 4.20.
En e�et, si x0 est choisi trop loin de la solution de l'équation, la méthode
peut diverger. En pratique, on peut appliquer la méthode de dichotomie a�n
de s'approcher de la solution de l'équation, puis mettre en oeuvre la méthode
de Newton qui converge beaucoup plus vite vers la solution que la méthode de
dichotomie.

Nous allons donner à présent des conditions su�santes sur f permettant
d'assurer la convergence de la suite dé�nie en (4.18) pour certaines valeurs
de x0.

Théorème 4.22 Soit f ∈ C2([a, b]). On suppose que

� (1) f(a).f(b) < 0.

� (2) f ′(x) 6= 0 pour tout x ∈ [a, b] (f est strictement monotone).

� (3) f ′′(x) 6= 0 pour tout x ∈ [a, b] (f ne change pas de concavité).

Alors pour tout x0 ∈ [a, b] tels que f(x0).f
′′(x0) > 0, la suite dé�nie en (4.18)

converge vers l'unique solution de l'équation f(x) = 0.

Preuve Dans la suite on suppose que f ′′(x) > 0 sur [a, b] (et donc f(x0) > 0
compte tenu de l'hypothèse f(x0).f

′′(x0) > 0) et que f ′(x) > 0 sur [a, b]. Les
trois autres cas se traitent de façon analogue à celui-ci et leurs démonstrations
sont laissées au lecteur.
Les conditions (1) et (2) assurent l'existence et l'unicité d'une racine simple
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l ∈ [a, b] de l'équation f(x) = 0.
Étape 1. La suite (xn) est minorée par l
De (4.18) et de la formule de Taylor-Lagrange appliquée à f entre xn et l,

f(l)− f(xn) = f ′(xn)(l − xn) +
f ′′(εn)

2

(l − xn)2

2
, εn ∈]l, xn[

on déduit les égalités

xn+1 − l = xn − l + f(l)−f(xn)
f ′(xn)

= xn − l +
(l − xn)f ′(xn) + (l−xn)2

2
f ′′(εn)

f ′(xn)

= (xn−l)2
2

f ′′(εn)
f ′(xn)

.

Il en résulte que si f ′′(x) et f ′(x) sont de même signe sur [a, b] alors pour
n ≥ 0, xn+1 − l > 0. La suite est minorée par l à partir du rang n ≥ 1.
Étape 2. La suite (xn) est décroissante.
la fonction f est strictement croissante sur [a, b] et on a donc f(x) ≥ 0 pour
x ≥ l.
On a alors puisque f(x0) > 0

l < x1 = x0 −
f(x0)

f ′(x0)
< x0.

Puisqu'on a supposé que f ′(x) > 0 sur [a, b], la fonction f est croissante sur
[a, b] et comme xn ≥ l pour tout n ≥ 1, on déduit que f(xn) ≥ f(l) = 0. On
a pour n ≥ 1

l < xn+1 = xn −
f(xn)

f ′(xn)
< xn.

Donc la suite (xn) est décroissante. Comme elle est minorée par l, elle con-
verge, et on a vu qu'elle converge vers l.

4.5.2 Méthode de Régula Falsi

La méthode de Newton comporte un autre inconvénient que celui de ne pas
converger pour n'importe quelles valeurs de x0. En pratique, on ne connait
pas nécessairement l'expression de f ′ en tous points. On peut alors approcher
la valeur f ′(xn) par le quotient aux di�érences �nies

f(xn)− f(xn−1)

xn − xn−1
.
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On obtient alors la méthode de régula-falsi :

xn+1 = xn −
f(xn)(xn − xn−1)
f(xn)− f(xn−1)

. (4.22)

On peut alors montrer le théorème :

Théorème 4.23 Soit f ∈ C2([a, b]). On suppose que f admet une unique
racine l ∈ [a, b] et que f ′(l) 6= 0 et f ′′(l) 6= 0. Alors il existe η > 0 tel que si
x0, x1 ∈]− η + l, l + η[, la suite (xn) converge vers l.

4.5.3 Ordre d'une méthode

Dé�nition 4.24 Soient g ∈ C0([a, b] à valeurs dans [a, b] et x0 ∈ [a, b] On
considère la suite xn+1 = g(xn) et on suppose que (xn) converge vers l.
Une méthode dé�nie par xn+1 = g(xn) est dite d'ordre p s'il existe C > 0
telle que

|xn+1 − l| ≤ C|xn − l|p ∀ n ∈ IN. (4.23)

Une méthode d'ordre 1 est dite linéaire, une méthode d'ordre 2 est dite
quadratique.

Remarque 4.25 D'après la dé�nition 4.24, si une méthode est d'ordre p,
elle est aussi d'ordre m < p puisque à partir d'un certain rang, on a l'inégalité

|xn − l|p ≤ |xn − l|m.

Précisons l'ordre des méthodes de résolution de l'équation f(x) = 0 rencon-
trées dans ce cours.

Proposition 4.26 La méthode des approximations successives ainsi que la
méthode de la corde sont des méthodes d'ordre 1 au moins. La méthode de
Newton est une méthode d'ordre 2 au moins.

Preuve On a montré que la méthode du point �xe est au moins une méthode
d'ordre 1 puisque, sous les hypothéses du théorème 4.6, on a

|xn+1 − l| = |f(xn)− f(l)| ≤ k|xn − l|, ∀n ∈ IN.

Il en va de même dans la méthode de la corde, compte-tenu de ce qui a été
établi en (4.17).
D'après (4.21), il résulte que la méthode de Newton est d'ordre 2 au moins.
En�n, on peut montrer la proposition suivante :

95



Proposition 4.27 La méthode de Régula Falsi est d'ordre p = 1+
√
5

2
.

Explicitons à présent la dé�nition 4.24 dans le cas où g est trés �réguliére�,
par exemple de classe Cp.

Proposition 4.28 Soit g une fonction de classe Cp sur [a, b] et l un point
�xe de g. On suppose que [a, b] est stable par g et on considère la suite
xn+1 = g(xn).
La méthode est d'ordre p si et seulement si

g′(l) = g′′(l) = · · · = g(p−1)(l) = 0, et g(p)(l) 6= 0.

Preuve La fonction g étant de classe Cp au point x = l, elle admet un
développement limité à l'ordre p en ce point. On a donc

en+1 = xn+1 − l = g(xn)− g(l) =

p∑
k=1

gk(l)

k!
(xn − l)k + o((xn − l)p).

Supposons que

g′(l) = g′′(l) = · · · = g(p−1)(l) = 0, et g(p)(l) 6= 0.

On a alors
|xn+1 − l| = |g(p)(l)||xn − l|p + o((xn − l)p),

Donc, on a bien (4.23).
Supposons qu'il existe un entier m tel que m < p et g(m)(l) 6= 0 (et supposons
que m soit le plus petit entier satisfaisant cette propriété). Alors

|xn+1 − l|
|xn − l|p

=
|g(m)(l)|
|xn − l|p−m

(1 + o(xn − l)).

Comme |g(m)(l)|
|xn−l|p−m tend vers +∞ quand n tend vers l'in�ni (p −m > 0), on

|xn+1 − l|
|xn − l|p

tend vers +∞ quand n tend vers +∞ : la méthode ne peut donc

pas être d'ordre p. Ceci achève la preuve de la proposition 4.26.

4.6 Accélération de la convergence

Théorème 4.29 Si la méthode dé�nie par xn+1 = g(xn) converge vers l et

si
xn+1 − l
xn − l

→ A ∈ IR alors la suite (x′n) dé�nie par

x′n = xn −
(xn+1 − xn)2

xn+2 − 2xn+1 + xn
(4.24)
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converge vers l plus rapidement, c'est-à-dire que

lim
n→+∞

x′n − l
xn − l

= 0.

Preuve Posons en = xn − l. Par hypothèse, il existe A et (εn) tels que

en+1 = (A+ εn)en, (4.25)

où εn tend vers 0 quand n tend vers +∞. En e�et, il su�t de poser pour
tout n ∈ IN

εn =
en+1

en
− A.

On a
en+2 = (A+ εn+1)en+1 = (A+ εn+1)(A+ εn)en.

D'autre part,

xn+2 − 2xn+1 + xn = xn+2 − l − 2(xn+1 − l) + xn − l = en+2 − 2en+1 + en.

Il en résulte que

xn+2 − 2xn+1 + xn = ((A+ εn+1)(A+ εn)− 2(A+ εn) + 1)en
= ((A− 1)2 + θn)en

(4.26)

avec
θn = (εn+1 + εn)A− 2εn + εn+1εn.

De plus, d'après (4.25)

xn+1 − xn = (A− 1 + εn)en.

Donc,

x′n − l = xn − l −
(xn+1 − xn)2

xn+2 − 2xn+1 + xn
= en −

(A− 1 + εn)2e2n
((A− 1)2 + θn)en

ou encore
x′n − l
xn − l

=
θn − 2εn(A− 1)− ε2n

(A− 1)2 + θn
. (4.27)

Remarquons que θn tend vers 0 quand n tend vers l'in�ni (car εn tend vers

0 quand n tend vers +∞). Donc
θn − 2εn(A− 1)− ε2n

(A− 1)2 + εn
tend vers 0 quand n

tend vers +∞. Compte-tenu de (4.27), on en déduit que
x′n − l
xn − l

tend vers 0

quand n tend vers +∞.
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