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1 Introduction

De nombreux problémes issus de la physique, de la chimie, de la biologie, de
I’économie et des finances conduisent a I’élaboration de modéles mathéma-
tiques. L’exploitation de ces modéles nécessite fréquemment d’avoir recours
a l'utilisation de méthodes numériques. L’analyse numérique d’un probléme
se décompose alors en quatre étapes.

1. Modélisation. Obtention d’un modéle mathématiques du probléme con-
sidéré. Ce modéle peut étre constitué d’une équation différentielle ou d’une
équation aux dérivées partielles, d’'un systéme d’équations non linéaires, ...
2. Ces modéles sont tres difficiles a résoudre mathématiquement, voire im-
possible a résoudre de facon exacte.

Il est alors nécessaire d’envisager un choix de méthodes numériques afin
d’étudier et d’exploiter le modéle.

3. Programmation.

4. Exécution du calcul numérique et interprétation des résultats.

Dans de trés nombreux cas, il est impossible de résoudre de facon exacte une
équation différentielle ou de calculer une intégrale.

L’objectif du cours d’analyse numérique est de déterminer des méthodes pour
calculer la valeur numérique (valeur approchée) d’une intégrale, ou d’une
équation. Certaines de ces méthodes seront implémentées sur ordinateur lors
des travaux pratiques.

Ce cours est essentiellement subdivisé en trois parties :

e Interpolation polynomiale.
e Intégration numérique.
e Résolution de 'équation f(z) = 0.

Dans la premiére partie, on abordera le probléme de I'interpolation polynémi-
ale. Etant donné n + 1 points distincts o < - -+ < z,, d’un intervalle [a, b],
et f:[a,b] — IR une fonction donnée, on cherche un polynéme P de degré
le plus petit possible satisfaisant

P(z;) = f(z;) i=0,--- n. (1.1)



On montrera qu’il existe un unique polynome de degré inférieur ou égal a n
satisfaisant (1.1).

Dans un second temps, on montrera qu’il est possible de calculer P par récur-
rence sur n par la méthode des différences divisées.

Puis on abordera le probléme d’interpolation de Hermite. Ftant donné
(yi)o<i<n €t (2i)o<i<n, On cherche un polynéme P de degré le plus petit pos-
sible satisfaisant les conditions

Plr)=y; =0, ,n,P(x;)=2 i=0,--,n (1.2)

On établira qu’il existe un unique polynoéme de degré inférieur ou égal a 2n+1
satisfaisant (1.2).

Dans un troisiéme temps, on montrera ge 1’on peut choisir les (z;) de maniére
a minimiser l’erreur d’interpolation e(x) := |f(x) — P(x)|.

Dans la seconde partie, on déduira de la méthode d’interpolation une méth-
ode afin de déterminer la valeur approchée d’une intégrale d’une fonction
d’une variable (formules de Newton-cotes). On présentera les méthodes dites
des rectangles, des trapézes ainsi que la méthode de Simpson. On étudiera
dans chaque cas 'erreur obtenue en ayant recours a la méthode de Péano.
La troisiéme partie est consacrée a la résolution de ’équation f(x) = 0. Dans
un premier temps, on rappellera la méthode de dichotomie, puis on abordera
des méthodes de type point fixe, reposant sur le trés important théoréme
du point fixe. En particulier, on étudiera la méthode des approximations
successives ainsi que la méthode de la corde. On montrera que la vitesse
de convergence de ces méthodes est “géométrique”. La derniére partie sera
consacrée & la méthode de Newton. On montrera notamment que la vitesse
de convergence de cette méthode est quadratique et que par conséquent, elle
est la plus efficace pourvu qu’elle converge.

2 Interpolation polyndmiale

2.1 Rappels
2.1.1 Théorémes de Rolle et des accroissements finis

On rappelle les énoncés de deux théorémes importants en analyse réelle, le
théoréme de Rolle et des acroissements finis.

Théoréme 2.1 (Rolle) Soit f de [a,b] dans IR, continue sur |a,b], dérivable
sur |a, b[ telle que f(a) = f(b). Alors il existe ¢ €]a,b]| tel que

f'e) =o0.
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Démonstration. Cas 1. f est constante sur [a, b]. Alors pour tout = €|a, b,
f'(x) =0

Cas 2. La fonction f est non constante sur [a, b]. La fonction f étant continue
sur [a, b], 'image de [a,b] par f est un intervalle fermé borné de IR (I'image
d’un compact connexe par une application continue est un compact connexe
de IR). Etant donné que f(a) = f(b) et que f est non constante sur [a, b], elle
admet un maximum ou un minimum sur [a, b] atteint en un point ¢ distinct
de a et de b. En ce point, on a f’(¢) = 0, ce qui achéve la preuve du théoréme.

Du théoréme de Rolle, on déduit I'important théoréme suivant :

Théoréme 2.2 (Acroissements finis)
Soit f : |a,b] — IR continue sur [a,b] et dérivable |a,b].
Alors il existe ¢ €]a,b] tel que

f(b) — f(a)

R ),

Preuve du théoréme des accroissements finis
L’équation de la droite passant par A(a, f(a)) et B(b, f(b)) est donnée par

v= 1)+ O D )

On considére la fonction auxiliaire définie sur [a, b] par

F(z) = f(z) = fla) - = ——(z—a).

La fonction F' satisfait les hypothéses du théoréme de Rolle puisque f est
continue sur [a, b] et dérivable sur |a,b[. On a clairement F'(a) = 0). D’autre
part, on a

Les hypothéses du théoréme de Rolle sont satisfaites, on en déduit qu’il existe

¢ €la, b] tel que f(b) — f(a)

Flle) =0=/(e) - F =,

d’ou le résultat.

Le théoréme des accroissement finis permet de conclure sur la monotonie
d’une fonction a partir de sa dérivée.



Corollaire 2.3 Soit f : [a,b] — IR une fonction continue sur |a,b] et dériv-
able sur ]a,bl. Alors on a f'(x) > 0 sur |a,b[ si et seulement si f est crois-
sante sur |a, bl.

Démonstration Montrons que si f'(x) > 0 sur ]a,b[, f est croissante sur
[a,b]. Soit (u,v) € [a,b]?, u < v. D’aprés le théoréme 2.2, il existe ¢ €]u,v|
tel que

f() = fu) = f'(e)(v = u).
Il en résulte aussitot que f(u) < f(v) (v < v et f'(c) > 0), donc f est
croissante sur [a, b].
Réciproquement, soient z¢ €la,b| et h > 0 tels que zg + h €a,b[. Comme f
est croissante, on a f(zo+ h) — f(xo) > 0 et donc

lim f(zo+ h) — f(xo)
h—0t h

= f'(20) 2 0.

2.1.2 Le théoréme des valeurs intermédiaires

On rappelle 'important théoréme suivant, dit théoréme des valeurs intermé-
diaires ;

Théoréme 2.4 Soit f une fonction définie sur |a,b], continue sur [a,b] telle
que f(a).f(b) <0. Alors il existe c € |a,b] tel que f(c) =0.

On déduit du théoréme 2.4 la proposition suivante (deuxiéme formule de la
moyenne, version discréte, utile en intégration) :

Proposition 2.5 Soient f : [a,b] — IR une fonction continue et (g;)o<i<n,
n + 1 nombres positifs (ou négatifs). Soient (x;), n + 1 points distincts de
[a,b)].

Alors, il existe € [a,b] tel que

n

> f(wi)gi=F(O)_ g (2.1)

1=0

Preuve

On suppose ici g; > 0 pour tout 7. Si f est constante, le résultat est triviale-
ment vrai. Supposons f non constante sur [a, b].

Considérons la fonction ¢ : = — > " (f(z;) — f(z))g;. Comme la fonc-
tion f est continue sur [a, b, 1 admet un minimum et un maximum atteints
respectivement en T et . On a alors

Y(z) >0 et (2) <0.



La fonction ¢ est continue sur [a, b], elle satisfait les hypothéses du théoréme
des valeurs intermédiaires. On déduit du théoréme des valeurs intermédi-
aires qu’il existe ¢ € [a,b] tel que () = 0, ce qui achéve la preuve de la
proposition.

2.1.3 Racines d’un polynéme

Le théoréme suivant sera fréquemment utilisé dans la suite du cours.

Théoréme 2.6 Soit P € C[X] de degré n > 1. On suppose qu’il existe
a € C tel que P(a) = 0.
Alors, il existe un polynome Q) de degré n — 1 tel que

P(z) = (2 = a)Q(2).

Preuve
On effectue la division euclidienne de P par z — a. On déduit qu’il existe un
polynéme @) de degré n — 1 et C' € C tel que

P(z2) =Q(2)(z —a) + C.
On a

d’o1t la conclusion du théoréme.

Remarque 2.7 Il résulte du théoréeme 2.6 qu’un polynome de degré inférieur
ou €égal a n admettant n + 1 racines est le polynome nul.

On rappelle également ici le trés important théoréme da a d’Alembert et &
Gauss.

Théoréme 2.8 (Alembert-Gauss)Un polynome a coefficients complezes non
constant admet au moins une racine dans C. Par conséquent, s’il est de
degré n # 0, il admet exactement n racines.

Preuve Soient n € IN* et P(2) = a,2" +a,_12""' +- - -+ag, avec a, # 0. On

considére la fonction f définie sur C a valeurs réelles f(z) := |P(z)|. Posons
m = irelmf: |P(2)].

Comme le degré de P est supérieur ou égal a 1, on a |P(z)| — +o00 quand
|z| = +o0 et on peut se ramener & un disque fermé pour chercher le minimum
de f sur C. Comme f est continue et que les compacts de C sont les sous-
ensembles fermés et bornés de C, la fonction f admet un minimum (noté co)
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sur C atteint en zj.
Effectuons le changement de variable u = z — 2. On a alors

P(z)=Plu+z) =co+cu+---+cyu”
Supposons que P n’admette pas de racine dans C, autrement dit que

CQ%O.

Soit p € IN*, le plus petit indice tel que ¢, # 0. On a

c Cn
P(u+ z0) = co(1 4+ 2uP + - + Zu").
Co Co

Le nombre complexe —2 admet une racine p-iéme, autrement dit, il existe
P

A € Ctelle que NP = — % Effectuons alors le changement de variable u = A\v.
Cp
On obtient
P(Av+ 29) = ¢ (l—vp+---+c—n/\”v”> ,
Co
ou encore
P(A\v + z) = co(1 — 0P 4 vPe(v))

ot €(v) tend vers 0 quand v tend vers 0.
Il existe vy € C tel que |1 — vf + vhe(vg)| < 1. T1 suffit de prendre vy > 0
assez proche de 0 pour obtenir cette inégalité. Ainsi, on obtient :

|P<)\U0 + Zo)| < |Co|

ce qui contredit le fait que ¢y est le minimum de f. Donc P admet au moins
une racine dans C. Il résulte alors du théoréme 2.6 qu’il admet exactement
n racines.

2.1.4 Formules de Taylor

1. Formule de Taylor avec reste de Young.

Théoréme 2.9 Soit f une fonction définie sur I, n fois dérivable au point
d’abscisse x = a € I. Alors f admet un développement limité d’ordre n en a
et de plus, on a pour v € I

fx)=fla)+ fl(a)(x —a)+---+

ot lim,_,, €(x —a) = 0.



Preuve On peut sans perdre en généralités établir le résultat en x = 0. 11
suffit de poser g(x) = f(z + a). La preuve est donc établie en z = 0.

La formule est vraie pour n = 1. Il a été établi en analyse appliquée que f est
dérivable au point z = 0 si et seulement si elle admet un développement
limité d’ordre 1 en ce point.

La preuve de la formule de Taylor-Young s’obtient par récurrence sur n en
appliquant le théoréme des accroissements finis entre 0 et z a la fonction ¢
définie par

" k)
o(w) = £l - 3 T W (23)

k=0

En effet, supposons le résultat vrai au rang n — 1 (n > 2) et considérons
la fonction ¢ définie en (2.3). On a ¢(0) = 0 et d’autre part, appliquant
le théoréme des accroissements finis entre 0 et x, on obtient qu’il existe un
nombre ¢, €]z, 0[U]0, z[ tel que

¢(x) — ¢(0) = ¢'(cr). (2.4)

Mais la fonction f” est n—1 fois dérivable et on peut lui appliquer ’hypothése
de récurrence. On a donc

f'(@) = f(0)+ f(0)x + - + CES + 2" e(x),

ot lim, o €(x) = 0. On déduit alors de (2.3) et (2.4) que

n o f(k)
f(x) — Z f—(o)xk = ¢/(c)r = 2" te(cy).

k!
k=0

On a alors
n—1
X

—— e(cy).

e e(c,) = 2"
T

On pose € (z) = C%j €(c,). Compte tenu de la définition de ¢, (en particulier

T

du fait que ¢, tend vers 0 quand z tend vers 0), on en déduit que
—~ f¥(0) n
NE pEad LEJPUE)
k=0

avec €1(x) qui tend vers 0 quand x tend vers 0. Le résultat est donc vrai au
rang n, ce qui achéve la preuve du théoréme.

2. Formule de Taylor avec reste intégral.



Théoréme 2.10 Soient f une fonction de classe O™ sur I et a € I. On
a ’égalité

f"(a)

n!

fl@) = fla)+ f'(a)(z —a) +--- + (z —a)" + Rn(2), (2.5)

Ru(z) = /ax @;—!t)yzf(n+l)(t)dt = /0 u;—!t)nf(”-i-l)(a—|—t(aj—a))(x_a)n+1dt'
(2.6)

On donne ici la preuve de la formule de Taylor avec reste intégral. Elle repose
sur le lemme suivant :

Lemme
Soit v une fonction définie sur I de classe C" L. On a I'égalité
d (1—x)" 1—x)"
%[U(x) + (1 =z () 4+ + TU( )(x)] = Tv( (z) (2.7)

Démonstration du lemme Effectuons une récurence sur n.
Sin = 0, 'égalité est satisfaite. Supposons 'égalité satisfaite au rang n et
montrons qu’elle est vraie au rang n + 1. On a

(1— )" -

(1

d / n - (n+1)
o)+ (- )+t ; v;< o)+ L)

d , 1—a)" d x)" ! (1
= @)+ (- o) ooy L dx( n+1 )
- —u;!x) v("“)(x)—(ml)—((;l?)‘! o () + 1(n U@

d’ou le résultat.

De I’égalité (2.7), intégrée entre 0 et 1, on déduit immédiatement la propo-
sition

Proposition 2.11 Soit v une fonction de classe C™*' sur [0,1]. On a
I’égalité

Pa—e)

v(1) —v(0) —v'(0) —--- — —=0"(0) = /0 ( v () dt. (2.8)

n!

Démonstration du théoréme 2.10 On pose v(t) = f(a +t(x —a)). On a
alors pour tout ¢t € 1

v (t) = f™(a+t(x —a))(z — a)".
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En réecrivant I'égalité (2.29), on déduit (2.10).

3. Formule de Taylor avec reste de Lagrange.
Le théoréme suivant est dii au mathématicien Lagrange.

Théoréme 2.12 Soit n € IN. Soient f une fonction définie sur I, n + 1
fois dérivable sur I et a € 1. Alors on a :

f(x) = f(a) + fa) (@ —a) + L (@ —a)? + - 4 L2 (5 _ q)n 4 R, (),
(2.9)
ot _ fO ) (@ +0,(z — a))
(n+1)!

R, (z) (z —a)"*', 6, €]0,1].

Remarque 2.13 Le théoreme précédent est une généralisation de la formule
des accroissements finis. FEn effet, dans le cas ou n = 0, on retrouve le
théoreme des accroissements finis. Rappelons que dans la précédente section,
on a exprimé le théoréme des accroissements finis sous la forme suivante :
étant donné x > a

f(@) = fla) = f()(x —a), c€la,al
Dire que ¢ €la, x|, ¢’est dire qu’il existe 0 €)0,1] tel que ¢ = 0x + (1 —0)a =

a+ 0(x —a). On retrouve ainsi la formule (2.9) dans le cas n = 0.

2.2 Interpolation de Lagrange
2.2.1 Existence et unicité du polynéme de Lagrange

On considére une fonction f définie sur [a,b] a valeurs réelles et (x;) n + 1
points de [a, b] tels que a < xg < 27 < -++ < 21 < T, < b. On cherche un
polyéme de degré minimal satisfaisant les conditions

P(x;) = f(z;), Vi=0,---,n. (2.10)

Théoréme 2.14 Il existe un unique polynéme de degré inférieur ou égal a
n satisfaisant les conditions (2.10).

Preuve a. Existence du polynéme d’interpolation.
Contruisons des polynémes [; ¢ = 0,--- ,n tels que

lz(l’]) = 6i,j'

11



On appelle [; le iéme polynome élémentaire de Lagrange. Pour tout j # 1,
x; est racine de [;, donc d’aprés le théoréme 2.6, on a

La constante C est déterminée par la condition [(z;) = 1, et on obtient

1
immédiatement C' = — .
i i — )
recherché est donné par

Par construction, le polynome [;

Le polynéme défini par

satisfait les conditions (2.10).

b. Unicité du polynéme d’interpolation

Supposons qu’il existe P et () satisfaisant 2.10. Alors le polynome P — @)
admet n + 1 racines et son degré est inférieur ou égal a n. On déduit de la
remarque 2.7 qu’il est identiquement nul. Donc P = Q).

Une autre approche possible pour déterminer le polynome interpolant f est
de chercher P sous la forme P(z) = ap + ajx + - - - + a,2", a; & déterminer
de telle sorte que (2.10) soit vérifiee. Le systéme linéaire obtenue est de la

forme
AnX - bn )

ou bn = (f(x())y af(‘rn))tJ X = (ai)§:07...7n et (An)’lJ = xi:117 1< Za] <
n+ 1.

Proposition 2.15 On a [’égalité

det A, = H (z; — ;).

0<j<i<n

A, est inversible et la solution du systéeme A, X = b, existe et est unique.

12



Preuve
Effectuons un raisonnement par réccurence sur n. Le résultat est vrai pour
n = 1. En effet, dans ce cas,

det Ay =21 — 29 et H (x; — xj) = 21 — 2.

0<j<i<l1

Supposons le résultat vrai au rang n — 1 (n > 2) et montrons qu’alors il est
vrai au rang n. Remplagons z,, par x dans I'expression de A,, (on notera par
A, (x) la matrice ainsi obtenue) et considérons I'application = — detA, (z)
notée 1. Remarquons que ¢ est un polynéme de degré inférieur ou égal a n
en l'indéterminée x et que, d’apreés les propriétés du déterminant, ¢ s’annule
en xg, ...,r,_1. On a donc

n—1

v(z) = C @ — =)

j=0

Déterminons C, le coefficient du mondéme de plus haut degré de . La con-
stante C' est obtenue en développant le déterminant de A, par rapport a la
derniére ligne et précisément, on a

C = det An,1

Mais par hypothése de récurrence, on a

C= H (i — ;).

0<j<i<n—1
Finalement, on obtient
n—1
det A, = H (x; —xj). | | (xp — ;) = H (i — ).
0<j<i<n—1 5=0 0<j<i<n

Proposition 2.16 Le systeme (I;) i = 0,--- ,n constitue une base de IR, [X].

Preuve La dimension de IR,[X] est égale & n + 1. Pour montrer que le
systéme constitue une base, il suffit de montrer qu’il est libre. Soit un n + 1-
uplet (ag, a1, ,a,) tel que

n

> aili(z) = 0. (2.11)

1=0

Posons © = z, k € {0,--- ,n} dans (2.11). On obtient alors a5 = 0. Le
systéme est donc libre et il constitue une base de IR,,[X].
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Exemple de calcul du polynéme d’interpolation
Considérons la fonction
2£E
J(x) = r+1
On veut interpoler cette fonction aux points xo =0, r1 =1 et 2o = 2. On a
f(xo) =1, f(x1) =1 et f(2) = 3. Les polynomes élémentaires de Lagrange
sont donnés par

i) = L2

Li(z) = —x(z —2) et ly(x) = @ D’aprés le théoréme 2.14, le polynome
P interpolant f est donné par

P(x) =lo(z) + li(x) + %lg(l’).

2.2.2 Estimation de ’erreur dans le cas ou f est de classe C"'!

On fait ici 'hypothése supplémentaire que f est de classe C"! et on se
propose de déterminer une expression de l'erreur f(z) — P,(z). On utilisera
une partie des résultats obtenus dans le lemme suivant, dont la démonstration
repose sur le théoréeme de Rolle :

Lemme 2.17 Soit n € IN*. Soit f une fonction de classe C™ sur [a,b]
admettant n+ 1 racines distinctes dans [a,b]. Alors il existe p €|a, b| tel que

f®(p) = 0.

Preuve Le résultat est vrai pour n = 1 d’aprés le théoréme de Rolle.
Supposons le résultat vrai pour n > 1 et montrons qu’il est alors vrai au

rang n + 1. Soient x1, ..., 12 les n + 2 racines simples de f. Appliquons
le théoréeme de Rolle sur chaque intervalle de la forme [x;,2;41], pour i =
1,---,n+ 1. 1l existe p; €]z;, z;41] tel que

f'(pi) = 0.

La fonction f’ admet donc n+ 1 racines distinctes et par hypothése de récur-
rence, il existe p €|a, b| tel que

()™ (p) = 0.

Le résultat est donc établi.
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Définition 2.18 On dit qu’une fonction [ de classe C" sur IR admet x
comme racine de multiplicité n si

fwo) = f'(wo) = -+ = f" D(wg) = 0.

En particulier, on dit que x¢ est une racine double de f si

f(xo) = f'(w0) = 0.
On peut déduire du lemme 2.17 le lemme suivant :

Lemme 2.19 Soit f une fonction de classe C*" 2 sur [a,b] admettant n+ 1
racines doubles distinctes dans |a,b] et une racine simple. Alors il existe
p €la,b[ tel que

JE 2 (p) = 0.

Preuve

Soient 1, ..., x,11 les n+ 1 racines doubles de f et y 'unique racine simple.
On peut supposer sans perdre en généralités que x1 < 19 < -+ < Ty < Y.
La fonction f’ admet pour racines simples x1 < x9 < -+ < x,41. D’autre
part, en appliquant le théoréme de Rolle sur les intervalles [x;,x;,1] pour
i =1,---,n et sur [T,41,y|, on obtient l'existence de n + 1 racines simple
de f’, distinctes de w1, ..., z,1. La fonction f’ admet donc 2n + 2 racines
simples, et d’aprés le lemme 2.17, on déduit qu’il existe p €]a, b[ tel que

;e (p) =0
ce qui achéve la preuve du lemme 2.19.

Théoréme 2.20 Soit f € C"([a,b]). Pour tout x € [a,b], il existe p, €
la, b[ tel que

f(nJrl)(pz) -
f(z) = Py(x) = RCEEE H(l’ — ;). (2.12)

i=0
Preuve
Remarquons que si x = xg, - - - , T, la conclusion du théoréme 2.20 est vraie.
Pour z distinct de xg, - - , z,, on pose

f(z) — Pu(x)

= [Tiso (@ — )

On considére la fonction auxiliaire, pour ¢ € [a, b]

n

o = f(t) = Pult) — K, [ J(t = ).

=0
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Remarquons que ¢, admet pour racines zg, - - - ,x, et que compte tenu de la
définition de K, on a ¢,(x) = 0. La fonction ¢, admet donc n + 2 racines
simples distinctes, et de plus, elle est de classe C"*1. D’aprés le lemme 2.17,
on déduit qu’il existe p, €]a, b[ tel que

¢a(z:n+1)(px) =0.

Or, comme P, est de degré inférieur ou égal a n, on a P"™ = 0. Par
ailleurs, [ (¢t — ;) est un polynéome de degré n + 1 dont la dérivée n + 1
iéme est égale & (n + 1)!. On obtient finalement

¢ (p,) = f D (p,) — Ko (n+ 1) =0,

soit,
f(@) = Palz) _ D (p0)
[ =)  (n+1)!

On en déduit (2.12).

Du théoréme 2.20, on déduit immédiatement le corollaire

Corollaire 2.21 Soient f € C"([a,b]) et P, le polynome qui interpole f
auzx points xro, -+ ,x,. On a lestimation

maXgefa,b] |f(n+1)(
(n+1)!

|f(z) — P,(2)| < il H|x—xi|, Vi€ la,b. (2.13)

Preuve
On a
£ 0] < e £ ()]
xreE|a,

L’inégalité (2.13) découle alors de 'inégalité précédente et de (2.12).

3. Applications : calcul d’une valeur approchée de In9.2 connaissant une
valeur approchée de In9 et In9.5. On donne In9 = 2.19722 et In9.5 =
2.25129. Une valeur approchée de In9.2 est donnée par P;(9.2) ou P, est
le polynéme qui interpole f définie par f(x) = Inz aux points o = 9 et
1 = 9.5.

Le polynome P; est donné par

Py(z) = 0.10814(x — 9) + 2.19722.
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et une valeur approchée de In 9.2 est donnée par 2.21884..
Déterminons une majoration de lerreur In 9.2 — P;(9.2). D’aprés le corollaire
2.21, on déduit que

maxge[9;9.5] ’f”(x)‘
2!

1In9.2 — P1(9.2)] < (9.2 —9)(9.5 — 9.2)

" 1 1 N :
Or, max,ef9:0.5) | f”(7)| = maxyep90.5 72 = g7, d’oll on obtient

maxge[9;9.5) ’f”(x)’

|In9.2 — P1(9.2)] < 5

(9.2 —9)(9.5 - 9.2) = 3.7037.10~*.

2.3 Différences divisées
2.3.1 Polynéme de Newton

La méthode de Lagrange comporte divers inconvénients. Par exemple, si
on introduit un point d’interpolation supplémentaire, il est nécessaire de
recalculer tous les polynomes élémentaires de Lagrange afin de déterminer le
polynoéme d’interpolation de f.

L’objectif dans cette partie est de déterminer les polynomes P, par récurrence
sur n. Soit n > 1. Supposons que P,_1, le polynéme qui interpole f aux

points xg, X1, - , T,_1 soit déterminé. On cherche donc P, sous la forme
Pu(z) = Pyoi () + gu(x),

gn polynéme a déterminer. Puisque P, (x;) = P,_1(z;) pouri=20,--- ,n—1,

on a g,(x;) =0 pour tout ¢ =0,--- ,n — 1. Donc on a

gn() = ay, l:I(m — ;).

i=0
Le coefficient a,, se note f|xg,---,z,]| : c’est la n-iéme différence divisée de
f aux points xg, - ,x,. Cest le coefficient du mondéme de plus haut degré
de P,. Observons que
Pn(xn> - Pn—1($n>

—1 .

[T (@0 — @)

L’objectif est de calculer a,, en effectuant une récurrence sur n. Par définition,
on pose

ap =

flzo] == f(20).

Calculons g, dans le cas n =1. On a

Py(x) = Py(x) + go(x),

17



avec Py(z) = f(xo) et

Pi(x) = flao) + f(x1) — f(xo)

(x — ).

Tr1 — I
On en déduit que go(x) = W(m — 1), et on pose
flzo, 21] = M_ (2.14)
1 — X
Afin de déterminer f[zg,- - ,x,] pour n > 2 quelconque, établissons le lemme
d’Aitken.
Lemme 2.22 Soit P le polynome qui interpole f aux points xq,--- ,x, et Q)
le polynéme qui interpole f auzx points xq,--- ,xpnr1. Alors le polynéme qui
interpole [ aux points xq, -+ ,Tpyq est donné par
—\P(z) — _
R(SL’) _ (xn-H ZL‘) (ZE) (IO ZE)Q(ZL‘) (2.15)
Tn+1 — Zo
Preuve En effet, on a
R(xo) = P(z0) = f(20),
et R(zp41) = Q(zps1) = f(xp41). Pour i £0,n+1, on a
nt1 — i) Plx;) — — T i n+1 — Li) — — T i

Tn+1 — To Tn+1 — Lo

On déduit du lemme 2.22 la proposition suivante :
Proposition 2.23 On a f[zo] = f(x) et pour n > 1

floy, - @) = flwo, - 2]
Tn — X9

flwo, -+ @] = (2.16)
Preuve Soit n > 1. Appliquons le lemme d’Aitken en considérant les
polynomes P et () qui interpolent f respectivement aux points xq, -+ , 2,1
et x1,---,x,. Le coefficient du monéme de plus haut degré dans R est
donné par f[zg, - ,x,], celui de P par f[zg,z1, - ,x,_1] et celui de @ par
flz1, e, - -+, x,]. Dapres (2.15), on déduit que le coefficient du monéme de
plus haut degré dans R est égal a

f[l”l,"' 737n] —f[lfo,"' 7~Tn—1]
Ty — To ’

Ceci achéve la preuve de la proposition 2.23.
On déduit immédiatement de la proposition 2.23 le théoréme :
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Théoréme 2.24 Le polynome P, qui interpole f auz points (x;) est donné
par

Po(x) = flzo] + flxo, 21)(x — w0) + -+ + flzo, - - ,Cﬂn]l:[(x—ﬂiz)

ot flxo, -+ ,x,) est donnée par (2.16).

A titre de comparaison avec la méthode de Lagrange, reprenons ’exemple de
calcul du polynome d’interpolation donné a la sous-section précédente. On
azrg=0,x;=1etxs=2¢et f(xg) =1, f(x1) =1et f(2) = %. Appliquant
la proposition 2.23, on obtient

f(x1) — f(z0)

f[x()?xl] = =0
Ty — X
et
Flan, w9] = f(z2) = f(a1) _ 1
To — X1
puis
flao,ar, ) = TELZAZ Sl 2
To — X 6

D’aprés le théoréme 2.24, on en déduit ’expression suivante de P :

r(z—1

Py(x) = flxo]+ flzo, x1](xz —x0) + fl20, 71, 22| (T —20) (X — 1) = 1—1—%.
2.3.2 Propriétés des différences divisées
Proposition 2.25 Soit o une permutation de {0,--- ,n}. Alors on a

fl@o©), s Tom)) = flxo, -+, Tl (2.17)
Preuve
En effet, le polynéme P, qui interpole f aux points zg, x1, - -+, x, est égal au
polynome @ qui interpole f aux points Ty (), ", Zon). Or, le coefficient du
monome de plus haut degré de P, vaut f[zg, - ,x,] et celui de @ est égal a

FlZo©), s Tom)] dolt (2.17).

Etablissons la proposition

Proposition 2.26 Soient p € IR,[X] el (2i)ic{o,.. n1} 7 + 2 points distincts
de [a,b] tels que a < xg <11 < -+ < Ty < Tpa1 < b. Alors plxg, -+ -, ] est
indépendant du choiz des points d’interpolation xq, - - - , x,.
De plus, on a

p[:lfo,--- 7$n+1] =0, vaRn[X]
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Preuve
En effet, soit a, le coefficient du monéme de plus haut degré de p. Alors
d’aprés le théoréme 2.24, quelque soit (xg,- -+ ,x,) € IR™, n + 1 points
distincts, on a

plro, -, xn] = ay.

D’autre part, d’aprés la proposition 2.23 et ce qui précéde, on a
p{xlf" 7xn+1]_p[x07”' 7‘TTL] ap — Ap

plTo, +  Tpgr] = = =0,
Tn+1 — Lo Tny1 — To

ce qui achéve la preuve de la proposition 2.26.

On pose

n

o o= [ -z 0<i<n.
d Jj=0,j#i

On peut montrer par récurrence la proposition suivante :

Proposition 2.27 Soit n € IN*. On a l’égalité

f[xo,-.. ’xn] ZH<:C£(IZ)’ n)

Preuve On raisonne par récurrence sur n.

Sin=1,ona flry,z1]= -f(rif—iﬁﬁ—%) et

Z flxz)  f(zo) n f(z1) _f(fl)—f(iﬂo)‘

i=0 [L;(zo,z1) (w0 — 1) (21— 20) T, — o

Le résultat est donc vrai dans ce cas. Supposons le résultat vrai a 'ordre n
et montrons qu’il est vrai & I'ordre n + 1.
On a

f[xla"' ’xmxn-&-l] —f[l’o,"' 71:71].

Tnt+1 — Zo

f[.%o, cr Ty, .Tn+1] =

Par hypothése de récurrence, on a

s \ [ (i)
> Mo~ S 0

f[x(h T, T, anrl] =

Par définition, on a

('xi - :CO) H('xh o 7xn+1) = H(l’o, U >$n+1>7 Vi 7& 0
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et

(xz' - xn—i—l) H<I07 e 7xn) = H(xﬁa e 7xn+1)7 Vi 7é n+ 1.

Or,
n+1 n
ZH xl? ’ xn+1> ZH@ -To, ) n)
e (S fw) —_

[t (@1, nt1) + ; <Hi(f’51> o Tpg1) (w0, ) ITo(@1, s Tnga)
De plus,

- f(zi) _ f(z:) ) e ) (@ — o — i 4 Toga)
221: (H (1’1,'-- 7xn+1)) Hi(x(b"' 7‘7:”) _; Hi($07"' 7xn+1)

-’En+1 - 900)
Z H IL‘(), : awn—i—l)

On en déduit que le résultat est vrai au rang n + 1 ce qui achéve la preuve
de la proposition 2.27.

On pose w(zg, ++ ,Tpy1) = Z?jol m De la proposition 2.27, on

peut déduire la proposition
Proposition 2.28 Soit f € C%[a,b]). Quelque soit p € R,[X], on a

|[f[zo, -+, Tnpa]|
w(@o,++  Tpy1)

ou Hf”oo = IaXg¢g[a,b] |f(l')’

Preuve D’aprés les propositions 2.26 et 2.27, on déduit 1’égalité

f[l'o, L1, 5 Tn, :UTLJrl]
n+1 )
Z;

= f[xowrla'” 7'In7'rn+1] _p[xoaxla'” 7'Tn7I7L+1 Z H o, - —

xn-i—l)

Par inégalité triangulaire, on en déduit aussitot I'inégalité

n+1 ) n+1

Fleo 2, %,WKD oo S 1=l Xl

Y

xn-l—l)

ce qui achéve la preuve de la proposition 2.28.
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2.3.3 Détermination de ’erreur
On pose e,(z) = f(x) — P,(z).
Proposition 2.29 On a pour tout x € |a, b,

en(x) = flxo, z1, - ,xn,x]H(a:—:ci).

)

Preuve
Soit z différent de g, xq,--- ,x,. Soit P, le polyndéme qui interpole f aux
points xg, 1, -+, x,. Le polyndme P quiinterpole f aux points xg, x1, - , Ty, T

est donné par
P(Z’) = Pn(x) + f[flfo, L1, Tp, j] H(x - xz)
i=0

Au point x = Z, on a

ce qui achéve la preuve de la proposition 2.29.

Du théoréme 2.20 et de la proposition 2.29, on déduit immeédiatement le
théoréme

Théoréme 2.30 Soient f € C"([a,b]) et a < xg < 71 < -+ <z, < b
Pour tout x € [a,b], il existe p, €a,b| tel que

F ) (pa)

SR (2.18)

f[$0a$17"' ,Z’n,l'] -

Preuve On a établi deux expressions de erreur | f(x)— P,(x)| (voir théoréme
2.20 et proposition 2.29). En comparant ces deux expressions, on déduit
(2.18).
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2.4 Interpolation de Hermite
2.4.1 Existence et unicité du polynéme de Hermite

Soient f une fonction dérivable et x; € [a,b], i € {0,--- ,n} n+ 1 points
distincts. Pour ¢ € {0,---,n}, on pose y; = f(x;) et z; = f'(x;) et on
cherche H, un polynéme de degré minimal défini par les relations

Hy(z;) = f(z;), i€{0,--- ,n}
{ H! (x;) = f'(x;) i€{0,---,n}. (2.19)

Théoréme 2.31 Il existe un unique polynéme de degré inférieur ou égal a
2n + 1 satisfaisant (2.19). I est donné par

H,(z) = Z Ai(a)y; + Z Bi(z)z, (2.20)

Ai(z) = F(x) (1 = 20(z)(x — ;) et Byi(z) = F(x)(z — x;).

Preuve
Existence de H,,. On va chercher H,, sous la forme

H,(z) = ZAi(UC)yi + Z Bi(7)z,

A; et B; a déterminer. Déterminons les A;. Si on pose

A;(x]) =0Vje {07 ,n},

BZ(ZEJ> - 07 V] € {07 T 7n}>
Bi(z;) =0 i#j, Bj(x) =1,
alors on a
H.(x;)) =vy;, et H (x;)=2z Vie{0,---,n}

Par conséquent, la fonction A; admet n—1 racines doubles (x;),;; et satisfait
les deux conditions A;(x;) = 1 et Al(x;) = 0. Par conséquent, on cherche
A; sous la forme A;(z) = [[,(x — z;)*(ax + b), le terme ax + b étant a
déterminer de telle sorte que

Ai(z;)) =1 et Al(z;)=0. (2.21)
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Remarquons que A; est de degré 2n + 1 et que I'on peut exprimer cette
fonction a l'aide des polynémes élémentaires de Lagrange. Finalement, on
cherchera A; sous la forme

Ai(x) == 13(z)(az +b).

Les deux conditions (2.21) sont satisfaites si et seulement si a et b satisfont
le systéme linéaire

ar; +b=1,
20;(z;)(ax; +b) +a = 0.
On obtient aprés résolution du systéme a = —20i(z;) et b = 1 + 2U(x;)x;,

d’ou
Ailw) = B(a) (1 = 20)() (@ — ).

On procéde de méme avec B;.

On obtient

Bz(xj> = 07 V]u

Bi(z;) =0 i#j, Bi(w)=1
B; admet x; j # ¢ comme racines doubles et z; comme racine simple. On en
déduit que

Bi(z) =C. H (z —2;)* (2 — x),
J=0,j#i

que 'on peut aussi écrire sous la forme

B;(z) = C.l;(x)*(z — ;).
On a Bi(x;) = C.1=1. Le polynome B; est également de degré 2n + 1, et
compte tenu de (2.20), on en déduit que H, est de degré inférieur ou égal a
2n + 1. On a donc établi I'existence de H,,.

Unicité de H,. On suppose qu’il existe deux polynomes H, et GG,, de degré
inférieur ou égal & 2n + 1 satisfaisant (2.19). Alors, la différence H, — G,
admet n + 1 racines doubles donc si H,, — G,, est non nul, son degré est de
2n + 2. Contradiction. Donc H,, = G,. La preuve du théoréme 2.31 est
achevée.

2.4.2 Estimation de ’erreur

Pour = € [a,b], on pose E(x) := f(z) — H,(z).
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Théoréme 2.32 Soit f une fonction définie sur [a,b] de classe C*" 2. Pour
tout x € la,bl, il existe p, € [a,b] tel que

f(2n+2 n
E(z) = NCTETE H ( — x;)*

=

Preuve
On introduit pour x € [a, b] fixé, la fonction

n . l’l
¢:(y) = f(y) — Hu(y) — (f(z H (« — )
=0 v
Remarquons que la fonction ¢, admet n + 1 racines doubles zg, xq, -+ ,x,

et une racine simple, . On applique alors le lemme 2.19. On déduit qu’il
existe p, €]a,b] tel que
o (pa) = 0.

Or, comme H(2n+2)(x) = 0 pour tout z et la dérivée 2n + 2 iéme de y —

(y — x;)* vaut (2n + 2)!, on obtient

(2n + 2)!

(2n+2) — f(@2n+2) _ ) — o)) —— 7
()8 (y) f (y) (f( ) Hn( ))H?:O(x—xi)Q

On en déduit immédiatement le résultat cherché.

2.5 Minimisation de ’erreur

Dans la suite, on note par E, I'’ensemble des polynémes unitaires de degré n.
On suppose que f € C""!([a,b]). D’aprés le théoréme 2.20, erreur dépend
de deux termes :

max | f" ()],
z€[a,b]

et
max | H T — ;)|
z€a,b]

La question est de déterminer comment choisir les (z;) de telle sorte que
maxgefas | [ [1o(z — ;)| soit minimal ?

Nous allons montrer dans cette sous-section qu’il existe un polynéme unitaire
q scindé de degré n + 1 tel que :

max |¢(z)| < max |v(z)| Vv € E,
x€[a,b] z€[a,b]
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2.5.1 Polynéme de Tchebychev

Pour z € [—1,1] et n € IN, on pose
T, (z) = cos(narcos(z)).

Proposition 2.33 La fonction T, est un polynome de degré n. De plus,
pour n > 1, le coefficient du monA "me de plus haut degré de T,, est égal a
on-t,

Pour tout x € [—1,1] et n € IN*, on a la relation

Thi1(z) = 22T, () — Thma (). (2.22)

Preuve
On a pour tout 0§ € IR

cos((n +1)8) = cosnf cos @ — sinnf sin é

et
cos((n — 1)0) = cosnf cos f + sinnf sin 6

donc
cos((n + 1)8) + cos((n — 1)0) = 2 cosnb cos

et en faisant le choix 6 = arcosz, on obtient (2.22).

Remarquons que Ty(z) = 1 et T (z) = x. En effectuant un raisonnement par
récurrence, et en utilisant (2.22), on déduit le résultat demandé. En effet,
le résultat est vrai pour n = 0 et n = 1. Supposons le résultat vrai pour
k€ {0,---,n}. Alors d’aprés (2.22), T,,.1 est un polyndome de degré n + 1
et le coefficient du monéme de plus haut degré est égal a 2.2 1 = 2",

Proposition 2.34 Pour n > 1, le polynome T, admet n racines simples

2k — 1
xy, = cos( o ), k=1,---,n.
De plus, T,, alteint ses extremums dans 'intervalle | — 1,1] auz n — 1 points
2), = cos(Er) k =1,--- ,;n—1. En ces points, on a T,(z}) = (=1)*. De
plus, en xy == —1 etz =1, on a

To(zg) = (=)™ et T,(x))=1.

Preuve On a T, (z) = 0si et seulement si cos(narcos(x)) = 0, soit narcos(x) =
% 4 km ou encore

m  km
= —+—), keZ
x COS(Qn + " ), ke

26



T,, est degré n, il admet au plus n racines notées ;. On en déduit que

(2k — 1)m

k=1, ,n.
2n )7 ) 7n

xy, = cos(
On a pour tout z €] — 1,1]

T (z) = sin(narcos(z)).

n
V1—a?
Donc T (z) = 0 si et seulement si

narcos(x) = km, k € Z.

La racines de 7, sont données par

k
:L“'/k:COS(—T(), k=1,---,n—1.
n

Comme la fonction 7] change de signe au voisinage de x}, on en déduit que
i k=1,--- ,n—1sont des extremums de 7,,. En ces points, on a

T, (7)) = cos(km) = (—=1).
De plus, T,,(—1) = cos(nm) = (—=1)" et T,,(1) = cos(0) = 1.

2.5.2 Minimisation de max,cp. [}, |2 — 2]

L’objectif est de minimiser maxgepp [, |2 — ;| en choisissant les x; au
mieux dans [a, b].

Dans la suite, on pose T, = o1

Théoréme 2.35 Soit p € E,,.
On a l'inégalité

oot = _ax [Ta(z)] < max [p(z)].

Preuve
On suppose qu’il existe P € E,, tel que

_ 1
‘mex [P(e)] < max [Tn(2)| = 5o (2.23)

Posons r = T, — P. Le degré de r est inférieur ou égal a n — 1 et r # 0.
D’autre part, d’apres la proposition 2.34, on a

r(xy) = To(xy) — P(xy) = (2_”{)1 — P(z}), k=0,---,n.
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1
o=y le signe de r(z},) dépend du signe de

, il est donc positif si k est pair et négatif si k est impair. Comme

Comme max_j1<z<1 ’P(JJ)‘ <

(=D*

2n—1
r est continue, on déduit du théoréme des valeurs intermédiaires appliquée

entre ) et 2, (k= 0,---,n) que r admet au moins n zéros. Or, comme le
degré de r est inférieur ou égal an — 1, on a r = 0. Donc T,, — P = 0 ce qui
contredit (2.23).

On déduit de cette étude que pour minimiser maxyejqy | [[1g(z — )], il
faut choisir pour x; les racines de T, ;. Ainsi, on a établi le théoréme

Théoréme 2.36 On suppose quea = —1, b =1 et que les points d’interpolation
x; sont les racines de T,y1. Alors, pour tout x € [—1,1], on a Uestimation

suivante :
S ()

£(@) = Pa(a) o

De plus, ce choix des points d’interpolation est le meilleur possible au sens
ol pour tout <yi)(z‘€{07...7n}) y; € [—1,1] (y; distincts deux-a-deuz), on a

|_2” z€]— 11]

— <
3 < oo, T
Il faut & présent établir un résultat analogue pour un intervalle quelconque
[a,b]. Soit ¢ la bijection affine définie sur [—1, 1] dont I'image est [a, b] avec
d(—1)=aet (1) =b. On a

b— b
dla) = 2= Cp 4 2O (2.24)
2 2
On pose
pour i = 0,---,n (x; définis dans la proposition 2.34) et pour z € [—1,1],

u = ¢(x). Le théoréme suivant généralise le théoréme 2.36 au cas d’un
intervalle quelconque :

Théoréme 2.37 Soient x € [a,b] et P, le polynome qui interpole [ aux
points (u;), pour i =0,--- ,n. On a alors pour x € |a, b
(b _ a)nJrl )
CPa) < Y FOD ().
) = Pao)] < (s e £ 0)

Ce choiz est le meilleur possible au sens pour toul (y;)icfo,—n}) Yi € [a,b],
on a



Afin de prouver le théoréme 2.37, établissons le théoréme
Théoréme 2.38 Soit p un polynome unitaire de degré n, scindé sur |a,b|.
Soit P défini par P(u) = H(u —u;), u € |a,b] et (u;) définies dans (2.25).

i=0
On a linégalité

P )_(b—a)"+1< (
argc?%(b’ ()l = g+l = 8% p(z)].

Preuve Soient (z;) les racines simples de p dans [a,b] et (y;) définie par

yi = ¢ Y(2),1=1,--- ,n. Pour tout u € [a,b], il existe un unique z € [—1,1]
tel que
N " " (b—a)"t!
|Pu)| = | [[(w=w) =[] l6(x) = d(:)| = —onrt | [ =)l
i=0 i=0 i=0
On a alors

5 B (b . a)n+1 n B (b _ a)nJrl 1 _ (b _ a)n+1
11[2[%?2] | P(u)| = on+1 xg[lafi] | 11(37 — ;)| = ontl  “on — 92nfl
(2.26)
et
B (b . a)n+1 n
5161[%] Ip(u)| = T on+l Ig[ljiffu | 11(56 — i)
On déduit alors du théoréme 2.35 'inégalité
~ (b _ a)n-i—l

nax [Pu)] = g < max p(u)]. (2.27)

Preuve du théoréme 2.37
La preuve du théoréme 2.37 découle immédiatement du théoréme 2.38 (voir

(2.26) et (2.27)).

Remarque 2.39 Considérons la fonction f(x) = sur [—4;4]. Posons

14 2
xr; = —4 4+ 1h, avec h = %, 1 = 0,---,N. Le polynome qui interpole la
fonction f aux points équidistants (x;) approche f de maniére trés mauvaise
au voisinage de —4 et 4. Ce phénomene est appelé le phénomeéne de Runge.
Un moyen d’y remédier est d’utiliser pour points d’interpolation les images

par ¢(t) := 4t des zéros du polynome de Tchebychev Ty .

29



2.6 Introduction a l’approximation uniforme par des
polyndmes

On note par IR,[X] 'anneau des polynomes de degré inférieur ou égal a n.
Soit f : [a,b] — IR une fonction continue sur [a,b]. On pose

[flloe = max [f(x)].
z€la,b]

Dans cette section, on étudie le probléme de I'approximation uniforme de f.
On cherche un polynéme Py € IR,[X] tel que

If = Polleo = inf I = pllo- (2.28)

pER,[X

On va montrer qu'un tel polyndéme existe et qu’il est unique.

2.6.1 Existence et unicité du polynéme de meilleure approxima-
tion

Le théoréme suivant donne la réponse a la question posée précédemment.

Théoréme 2.40 Etant donné f € C°([a,b]), il existe un unique polynéme
Py satisfaisant (2.28).

Preuve

Existence Observons que si f € IR,[X], on a Py = f. Supposons que
f ¢ IR,[X]. Considérons l'application ¢ définie sur IR,[X] & valeurs dans
IR définie par ¢(p) = ||p — f|l~- La fonction ¢ est continue sur IR,[X]. En
effet, soit pg € IR, [X]. On a par inégalité triangulaire

[6(p) = ¢(Po)loe < [P = Polloo-

Donc pour tout € > 0, il existe n = ¢, tel que ||[p — polleo < 7 implique
[6(p) — ¢(po)|oo < €.
D’autre part, ¢(p) tend vers 400 quand ||p|| tend vers oo puisque, par
inégalité triangulaire

¢(p) = [[Plloc = I fllse-

(On dit alors que ¢ est coercive.)
Donc, il existe R > 0 tel que

¢(p) > d(po) V ptel que ||p|| > R.
On a donc

inf —Dllee = Inf — P|lsos
pe}Rn[X]Hf P pe}g(oﬁ)llf P
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ou B(0, R) représente la boule fermée de centre O et de rayon R incluse dans
(B[ X, [[-[]so)-

Or, la boule B(0,R) est un fermé borné¢ de IR,[X], donc c’est un sous-
ensemble compact de IR,[X]. De plus, il s’agit d’un sous-ensemble connexe
de R,[X]. En effet, la boule est connexe par arcs (on peut relier deux points
quelconques de la boule par un segment), donc connexe.

L’image d’un sous-ensemble connexe et compact de IR,[X] par ¢, applica-
tion continue, est un sous-ensemble compact et connexe de IR". Les compacts
connexes de IR sont exactement les intervalles fermés bornés. On a donc

S(B(0, R)) = [, 6] C R*.
Il existe Py € B(0, R) tel que ¢(Fy) = « et donc

inf |f =pllo = inf [If =pllc = ¢(Fh)-

pER,[X] peB(0,R)
Unicité
Etape 1 Montrons dans un premier temps qu’il existe n + 2 points (z;) en
lesquels

|f(xi) = Po(zi)| = || f — Polloo-

Supposons que ce ne soit pas le cas, que I’égalité soit satisfaite en seulement
k points 1 < k < n + 2. Soit ¢ 'unique polyndéme qui interpole f aux points
x; i =1,---k. qest donc de degré inférieur ou égal & n. Par continuité de
x — f(z) — q(x) aux points (z;), on déduit qu’il existe V, un ouvert tel que
x; € V. pour tout ¢ et

f(2) — q(@)| < e, VaeV. (2.29)
Pour ¢ €]0, 1], on pose P = (1 — £)Py + tg. On a
P—f=0-t)R+tg—(1-0f-tf=0—-8)(F—f)+tla—[)
Pour z € V,, d’aprés (2.29), on a
((f = P)@)] < (L= f — Pollo + te.
Pour z ¢ V,, on a

[(f = P) (@) < sup |(f — Po)(y)| +tA,
yEVe

oA'A=|f — ¢||. Observons que

sup |(f — Po)(W)| < |If — Polloo-
Y& Ve
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[’inégalité précédente est stricte car x; ¢ V. et par définition des (z;), y —
|f(z) — Po(z)| atteint son maximum en ces points. Choisissons t assez petit
de telle sorte que

5;1‘1/)|(f—P0)(y)’+tA< 1f = Polloo- (2.30)

D’autre part, posant € = %, on obtient pour tout ¢ € [0, 1]

sup |(f — P)(x)] < (1 =t/2)f = Polleo < [ = Polloe- (2.31)

z€eVe

En conslusion, compte-tenu de (2.30) et (2.31), on a

1f = Billoe <[l = Folloe-

On obtient une contradiction puique Py est le polynéme de meilleur approx-
imation (P; est un polynéme de meilleure approximation de f que Py !).
Etape 2

Considérons a présent le polynéme P = @ ou P, et P, sont deux polynéme
de meilleure approximation. P est également un polynéme de meilleure ap-
proximation. En effet, par inégalité triangulaire

HP1+P2
2

1
— fllo < §(|‘f—P1H<>o +If = Plloe) = I f = P oo

Donc ||f — Pi|| = || f — Ps|| = || 2£22 — f||. Soient les n+2 points (z;) définis

pt P+ P
I = 22 = 1)

De tels points existent d’aprés I’étape 1. On a

P+ P
2

()]

P1 -+ P2 Pl + P2 1 1
| 5 —flleo = I( —f)(@i)| < §|(P1—f)(9€i)|+§|(P2—f)($i)| < [ f=Pillo-
Comme ||BE2 — f|| o = ||f — Pi||s, les inégalités ci-dessus sont en réalités

des égalités. Donc

1 1
S|Py = @)l + IR = (@)l = |If = Prlloo = |If = Palloo-
Il en résulte que Pon doit avoir 5|(Po — f)(z:)| > 3/ f — Pillec = 31|f — P2l -

Donc on a

[(Pr = ) ()] = [(Pe = [)(x3)] = || f = Pi|os-
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On obtient finalement
[(Pr = f) ()| = [(P2 = f)(@:)].

Or (P, — f)(w:) et (P — f)(x:) possedent le méme signe, puisque si
(P — f)(@i) = =(P2 = [)(w1),

alors ( — f)(x;) = 0 ce qui implique que f € R[X]. On en déduit que
Pi(x;) = Pa(x;) pour tout i. Donc le polynome P, — P, admet n + 2 racines,
il est nul et P, = P5.

P +Py
2

Remarque 2.41 Le schéma de la preuve suivi pour établir ['existence dans
le théoréme 2.40 s’adapte sans difficulté au cas ot on remplace IR,[X]| par
un espace vectoriel normé de dimension fini.

Soit une fonction ¢ définie sur un espace vectoriel normé E de dimension
finie a valeurs réelles, coercive (c’est-a-dire que ¢(x) tend vers +oo quand
|z||g tend vers 4+00) et continue sur E. Alors il existe un élément u € E
(non nécessairement unique) tel que

6(u) = inf (v).

veEE

Remarque 2.42 On a montré (voir théoreme 2.35) que le polynome de
Tchebychev de degré n est la meilleure approrimation de 0 par des polynomes
unitaires de degré n sur Uintervalle [—1,1].

Une caractérisation du polynome de meilleure approximation est donnée dans
théoréme suivant, di & Tchebychev, que 'on admettra :

Théoréme 2.43 Soit f € C%([a,b]). Le polynéme p € IR,[X] est la meilleure
approzimation uniforme de f sur |a,b] si et seulement si il existe n—+2 points
a<zog< T < <xpi1 <btel que

(1) (f(zs) = p(x:)) = €ollf = Plloos i=0,--- ,n+1, (2.32)
ot €0 = sng(f(zo) — p(xo)).

Remarque 2.44 Nous avons établi au cours de la preuve du théoreme 2.40
un résultat plus faible que la condition (2.32) : si Py est le polynome de
meilleure approximation de f, il existe n + 2 points (z;) en lesquels

|f(x:) = Po(xi)| = [|f = FPolloo-
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Exemple Meilleure approximation de z"™! sur [—1,1]. On cherche p, €

IR, [X] tel que

||l‘n+1 HCL’”+1

pER,[X]

Soit T),11 le n+ 1 iéme polyndme de Tchebychev. Le coefficient du monome
de plus haut degré de 7},.1 est 2". On pose

P = 2" =27, (7).

D’aprés la proposition 2.33, p, est un polynome de degré n. On va mon-
trer que d’aprés le théoréme de Tchebychev et la proposition 2.34, p, est le
polynéme de meilleure approximation de x"*! et
. 1
dist(2" ™', R, [X]) = o

D’apres la proposition 2.34, on a

1 1
ntl N T N
max @ pa(2)] = 5 e T (@)] = o
De plus,
-n / <_1)k
2 Tn+1(l‘k):2—n, k::(),,n+1

donc z — 2™t — p,(z) atteint max|_y 3 [2" ™ — p,(z)| en changeant de signe
n + 2 fois : d’aprés le théoréme de Tchebychev, p, est bien le polyndéme
recherché.

Remarque 2.45 En général, la détermination du polyndéme de meilleure ap-
proximation conduit & résoudre un systeme d’équations non linéaires, com-
portant de nombreuses inconnues. Un algorithme de résolution de ce systéme
est ’algorithme de Remez, non abordée dans le cadre de ce cours. En pra-
tique, on préférera utiliser le polynéme d’interpolation de Lagrange plutdt que
le polyndéme de meilleure approrimation. La résolution numérique du systéme
non linéaire est beaucoup trop coiteuse pour étre "rentable”.

2.6.2 Polynéme d’interpolation de Lagrange et polynéme de meilleure
approximation

On a le théoréme suivant.

Théoréme 2.46 Soit f € C%[a,b]) (x;) n+ 1 points distincts de [a,b].
Soit P, le polynome de Lagrange interpolant f aux points (x;) construit au
théoreme 2.14. Alors on a

dist(f, R [X]) < ||f = Palloo < (14 [|Anlo) dist(f, Rn[X]),
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ol

l; ieme polynome élémentaire de Lagrange.

Preuve Notons par P le polynome de meilleure approximation défini dans
le théoréeme 2.40. On a par inégalité triangulaire

1f = Balloe < I1f = Pllce + [[P = Pallcc- (2.33)

Le polynome qui interpole P aux points (z;) est lui-méme (P(z) = Y, P(z;)l;(z)),
donc pour x € [a,b], on a

n

P(z) = Po(z) = ) (P(w:) — f(a:)li(x).

=0

Par inégalité triangulaire, on en déduit que
|P(x) = Pu()] < D [P(x:) = f@a)lll@)] < |If = PllooAn(2).
=0

Il en résulte que

De (2.33) et de U'inégalité précédente, on déduit le résultat recherché.

2.7 Compléments sur 'interpolation
2.7.1 Fonctions splines
On considére dans la suite f : [a,0] > Retxzg=a <z < --- <z, = b,

n + 1 points distincts de [a, b].

Définition 2.47 Soitn € IN*. On appelle fonction spline, une fonction s de
classe C? sur [a,b] interpolant f auz points (z;)o<i<n, telle que la restriction
de s a Uintervalle [x;, ;1] i = 0,--- ,n — 1, notée s;, est un polynome de
degré inférieur ou égal a 3.

Comme s interpole f aux points (z;), on a les égalités :

si(x;) = fi=f(z;), i=0,--- m—1 et sq(x;)=fi, i=1,---,n
(2.34)
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Comme la fonction s est de classe C?([a, b]), on a les relations suivantes qui
expriment la continuité de s et de ses dérivées premiéres et secondes aux

points (z;) : pouri=1,--- ,n—1, on a
sioi(@i) = si(@),  si_q (i) = 57 (30). (2.35)
La fonction s; est un polynome de degré 3 pour tout ¢ =0,--- ,n — 1, donc

déterminer s revient a déterminer la valeurs de 4n inconnues. Les conditions
(2.34) conduisent & écrire un systéme linéaire & 2n équations, quant aux
conditions (2.35), elles se traduisent par un systéme linéaire an —1+4+n —1
équations. On obtient donc un systéme a 4n — 2 équations a 4n inconnues. Il
est donc nécessaire d’ajouter deux autres conditions afin d’assurer 'unicité
de la fonction spline. Plusieurs choix sont possibles, comme par exemple
poser s”(a) = s"(b) = 0.

Théoréme 2.48 I existe une unique fonction spline au sens de la définition
2.47, satisfaisant la condition

s"(a) = s"(b) = 0. (2.36)
Afin d’établir le théoréme 2.48, on aura recours a la proposition suivante

Proposition 2.49 Soit A € M,(IR) une matrice a diagonale strictement
dominante, c¢’est-A -dire telle que pour tout i € {1,--- ,n}, on a

n

J=1,j#i
Alors, la matrice A est inversible.

Preuve Montrons que I’ensemble des vecteurs X tels que AX = 0 est réduit
a {0}. Supposons que cela ne soit pas le cas. Soit X un vecteur non nul tel
que AX = 0. Soit 7 tel que

| X, | = max | X,

7’6{17 ’n}

Puisque X # 0, on a X;, # 0. On a
(AX)iy = Y a;;X; =0,
7=1

donc par inégalité triangulaire

n n

X.
|Gigiy| < |aio; ]| 55| < |-
XA

. . . K2 . . .
J=1,j#io0 0 Jj=1,j#io0
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Cette inégalité contredit (2.37). 11 est résulte que le noyau de A est vide et
donc A est inversible.

Preuve du théoréme 2.48

Etape 1. Détermination de s en fonction de s;.

On pose h; =x;41 —x;,1=0,--- ,n—1. Pouri=1,--- ;n— 1, on note par
s la valeur de s/ (z;). Comme s”(a) = s"(b) = 0, on pose sj = s/ = 0.

Par interpolation aux points z; et z;,1 et compte-tenu de (2.35), on obtient
pour:=20,--- .n—1

//( ): {/Ii+1 - T

T — T
2 1

S IR B
7 i+1
h; h;

En intégrant deux fois ’égalité précédente, on obtient

) " (:EiJrl — x)g " (LU — :Ei)?’
si(x) = s; —Ghi + $i+1—6hi

+ (Zi(.flji_;,_l — .T) + bl(.f — .CEZ‘),
oll a; et b; sont des constantes a déterminer. Les conditions s;(x;) = f; et
Si(i+1) = fiz1 se traduisent par

h2
+ aih; = fi, 52;151 + bih; = fis1.

2
s —L
"6
Remplacant alors a; et b; par leur valeur respective, on obtient pour ¢ =
0,---,n—1:

o) =t (BB ) s, (2R - )

+h—i(3ci+1 —z)+ ;:1 (x — ).

Etape 2. Détermination des valeurs de s/

Afin de déterminer s; pour tout ¢ € {0,---,n — 1}, il faut et il suffit de
déterminer la valeur de s pour tout i € {1,--- ,n — 1}.

D’aprés I’étape 1, on a

/ o _($i+1 - $)2 E " (‘T B xi)2 o E B £ fH—l
sile) = < o 6) S ( i 6) h o h

La relation s(x;) = si_;(x;) équivaut a

h'é h/’L f’L — fi+1 hi—l hi—l fi—l - fz
g g i Jim fin phiz1
S 3 i+1 6 hz i—1 6 + S; 3 hi_l :
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ou encore

hz‘SQ'H + Z(hi + h¢_1)8§' ¥+ hi_18§'_1 =6 (fi-H - fz . fz - fi—l) .

hi hi—1

pour ¢ = 1,2,--- ,n — 1. Nous avons obtenu un systéme linéaire de n — 1
équations & n— 1 inconnues (a noter que d’aprés (2.36), sg et s/ sont connus).
La matrice A du systéme linéaire obtenu précédemment est tridiagonale, &
diagonale strictement dominante. D’aprés la proposition 2.49, elle est donc
inversible et la solution est unique. On a donc établi I'existence et 'unicité
de la fonction spline.

On désigne par G 'ensemble des fonctions de classe C*([a, b]) interpolant f
aux points z; et satisfaisant I'une des deux conditions aux limites suivantes :

s'(a) = f'(a), §'(b)=f'(b), ou s"(a)=5"(b) =0. (2.38)
La fonction spline posséde la propriété remarquable suivante :

Théoréme 2.50 La fonction spline est ['unique fonction qui minimise [’énergie
de flexion, autrement dit,

b b
min/ g"(x)zdx:/ s"(z)?dz. (2.39)

geg

Preuve Etape 1. La fonction spline minimise 1’énergie de flexion.
Montrons que

/ s"(x)e" (x)dx = 0, (2.40)

ou e(z) := f(x) — s(x). Effectuons deux intégrations par parties successives
de fab s"(x)e” (z)dz. On obtient

b n—1 Tit1
/ $"(x)e"(z)da = [s"¢s — 3 / 5@ (2)¢ () dx
a i=0 V¥

puis

/a ) () s"(b>e'(b)—s"(a)e’(a)—ni (— / + @ (2)e(x)d + [s<3>(x)e(x)];;;+l) |

=0

Or, d’une part s = 0 puisque s est une fonction polynomiale de degré
inférieur ou égal & 3 par morceaux et e(x;) = 0 pour tout 7. Il en résulte que

b
/ s"(z)e" (x)dx = s"(b)e'(b) — s"(a)é'(a),
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et d’apres (2.38), on a s”(b)e’'(b) — s”(a)e’(a) = 0. On en déduit donc (2.40).
Il en résulte que

/ab f(x)?de = /ab e’ (z)*dx + /ab s"(z)*dz, (2.41)

puisque e + s = f et

/a b((e +5)")(2)2dn = / b ¢ () dx + / b s ()?dx + 2 / b ¢ ()s"(w)dw.

La relation (2.41) est vraie pour toute fonction g € G, on en déduit immédi-
atement que

b b
/g”(x)zdxz/ §"(z)*dx, Yg€G

puis que

geg

b b
min/ g"(x)Qd:E:/ s"(z)*dx.
Etape 2. Unicité du minimiseur

Soient (s1, s2) € G2, deux minimiseurs de I'énergie. Alors d’aprés la relation
(2.41), on a

b b b
/ Sll/(m)Zda::/ (s'l/(x)—sg(:v))de—i—/ sh(z)?dz.
Comme fab s(x)?dx = fab shy(x)?dz, il en résulte que
b
/ (s () — () = 0.
Donc les fonctions sy et so différent d’une fonction affine. Les conditions

s1(xj) = so(xj) = f(z;), 7 = 0,---,n impliquent que les fonctions s; et so
sont égales, ce qui achéve la preuve du théoréme 2.50.

3 Intégration numérique
Dans toute la suite, on considére une fonction f définie sur [a,b] & valeurs

réelles, intégrables sur [a,b] et a < xy < 1 < -+ < x, < b, n + 1 points
distincts de [a, b]. On pose

b
1(f) = / F(t)dt
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et on se propose de déterminer une valeur approchée de I(f). Comme an-
noncé dans I'introduction, la premiére méthode consistera a approcher I(f)
par I(p,) ot p, est le polyndéme qui interpole f aux points (x;)o<i<n.

Dans ce chapitre consacré a l'intégration numérique, on utilisera réguliére-
ment la deuxiéme formule de la moyenne :

Théoréme 3.1 Soit f une fonction continue sur [a,b] et g une fonction
positive, intégrable sur [a,b]. Alors il existe p € [a,b] tel que

L/ﬂ%@ﬁzﬂM/gwﬁ (3.1)

Remarque 3.2 La version “discréte” de la formule (3.1) a été établi dans la
proposition 2.5. La preuve de (3.1) est analogue & celle donnée pour établir

(2.1).

b b
Preuve On pose ¢(z) := / f(t)g(t)dt—f(x)/ g(t)dt. La fonction g étant

positive, on en déduit que fab g(t)dt > 0. Comme la fonction f est continue
sur [a, b, elle admet un minimum et un maximum atteint respectivement en
Z et . On a alors, comme ¢ est positive sur [a, 0]

[ g [ g
et donc ) ,
M@Z/f@mwﬁ—ﬂ@/g@ﬁ—ﬂ

On montre de méme que
P(z) <0.

On déduit du théoréme des valeurs intermédiaires qu’il existe ¢ € [a, b] tel
que ¥(¢) = 0, ce qui achéve la preuve du théoréme.

3.1 Formules de quadratures

On se propose d’approcher I(f) par une expression de la forme suivante, dite
formule de quadrature & n + 1 points

I(f) = Zaif(xi), (3.2)
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() {i=0,- m} € [a,b] distincts deux-a-deux et (;)fi=o,... n} réels.
On pose
E(f) = I(f) = In(f)-
On désignera par V' un sous-espace vectoriel de fonctions définies sur [a,b] a
valeurs réelles, intégrables sur [a, b].

Définition 3.3 On dit qu’une formule de quadrature est exacte sur l’ensemble
V s
I(f) = L.(f)=0, VfeV.

Définition 3.4 Nous dirons qu’une formule de quadrature a n+1 points est
d’ordre n si elle est exacte pour tout polynéme de deqré inférieur ou égal a
n. Autrement dit

I(p)—I,(p) =0, VpeV :=R,[X]

Proposition 3.5 Une formule de quadrature ¢ n + 1 points est exacte sur
IR, [X] si et seulement si elle est de type interpolation a n + 1 points, c’est-
a-dire st

b
oy, Z:/ lk(t)dt, VEk € {O, - ,n}
ol ly représente le k-ieme polynome élémentaire de Lagrange.

Preuve Supposons la formule exacte sur IR, [X]. Alors pour tout polynome
élémentaire de Lagrange [;, on a :

b n
/ lk(t)dtzz&ilk(xi) = q, k= 1,--- ,n.
@ i=0

b
Réciproquement, supposons oy, := / l(t)dt pour tout k. IR,[X]. Soit

a
P € IR,[X]. Le polynéme qui interpole P aux points (z;) n’est autre que P.
On a donc

/P(t)dtz/ ZP(mi)li(t)dt:ZaiP(xi).

On a montré que si la formule est de type interpolation, elle est exacte sur
R,[X].

Proposition 3.6 Soit m € IN*. Une formule de quadrature ¢ n + 1 points
est exacte sur IR,,[X] si et seulement si

E(z")=0, Vie{0,---,m}. (3.3)
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Preuve Observons que f — FE(f) est linéaire (en effet, les applications
fe fabf(t)dt et f >0 f(z;)\; sont linéaires). Si les égalités (3.3) sont

satisfaites, par linéarité, on obtient pour tout (5o, 51, -+, fm) € R™
Y BiE@')=E(>_pa') =0,
=0 1=0

ce qui achéve la preuve de la proposition 3.6.

3.2 Formules de Newton-Cotes
3.2.1 Formule des rectangles

La méthode des rectangles consiste a approcher I(f) par f(a)(b—a) (méthode
des rectangles a gauche), ou f(b)(b — a) (méthode des rectangles a droite).
La formule de quadrature (3.2) se réduit a

0

I(f) =) aif () = (b—a)f(a).

i=0
Ici, xg =a et ag = b — a.

L’erreur est donné dans la proposition suivante :

Proposition 3.7 Supposons f de classe C* sur [a,b]. L’erreur dans la méth-
ode des rectangles est donnée par :

it ;a)

De plus, la méthode des rectangles est une méthode exactement d’ordre 0.

, 1 €la, bl. (3.4)

Preuve Pour tout = €]a,b], il existe ¢, €|a, x|

f(@) = fla) = fl(e:)(x — a).

Intégrant cette égalité entre a et b et utilisant la deuxiéme formule de la
moyenne en posant g(x) = x — a, on déduit qu’il existe n €la, b] tel que

/ F)dt = fla)(b—a)+ f'(n) (b —2a)2'

Par définition, la méthode est d’ordre 0. Montrons qu’elle n’est pas d’ordre
1. En effet, d’'une part on a

b
/ rdr =
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d’autre part, on a
fla)(b—a) =a(b—a).
Or )2 )
a
5 — ? = a(b — Cl)

équivaut a (b — a)? =0, donc b = a.

3.2.2 Formule des trapézes
On approche f par son polynéome d’interpolation de degré 1. Une approxi-

b b
mation de / f(t)dt est donnée par / Pi(t)dt, ou P; est donné par
Pi(t) = f(a) + fla, bl(t — a).

b—a

| P = (st + )5

L’erreur est donné dans la proposition suivante :

Proposition 3.8 Supposons [ de classe C* sur [a,b]. L’erreur dans la méth-
ode des trapézes est donnée par :

_f")
2

(b—a)’
12

b
E(f) / (z — a)(z — b)dz = — 1" () Cnelab.  (35)

De plus, la méthode des trapézes est une méthode d’ordre 1.

Preuve
Etape 1. Estimation de ’erreur D’aprés le théoréme 2.20, on déduit que

/abf(t)dt - /ab Pi(t)dt = /ab P (0 — e -

La fonction g(x) = (x — a)(x — b) est de signe constant sur [a, b] (g est néga-
tive), donc d’aprés la deuxiéme formule de la moyenne, on obtient I’estimation

1" b oy
E(f) :f_<77)/ (I_a)(x_b)dl’:—f”(n)(b 12)

5 , 1€ [a,b].

Etape 2. Détermination de I’ordre de la méthode.
Par construction, la méthode est au moins d’ordre 1. Montrons qu’elle est
exactement d’ordre 1.

43



Etudions d’abord le cas particulier suivant. Posons f(z) = 22, a = —1 et
b=1 0Ona
’ 2
/ 2’dr = =
a 3

b—a

D’autre part

(f(a) + (b)) =2.

La méthode n’est donc pas d’ordre 1 dans ce cas.
Cas ou a et b sont quelconques
Posons t = ¢(z), x € [—1,1] o ¢ est définie en (2.24). On a

/ fontr= 2 [ fos

et alors d’apres I'étape 1

1-(=1)

7f@M%UFD#M» )

= (fop~(a) + fop~'(b)) on obtient
b—a
5

et comme (f(—1)+ f(1))=
/ fop™t(t)dt # (fop'(a) + fop~ ' (D))

Par conséquent, la formule n’est pas exacte si on choisit g(t) = fod™1(t), ce
qui démontre que la formule n’est pas d’ordre 2. Nous venons donc d’établir
que la méthode est exactement d’ordre 1, ce qui achéve la preuve de la
proposition 3.8.

3.2.3 Meéthode de Simpson

On approche f par son polynéome d’interpolation de degré 2. Une approxi-
b b

mation de / f(t)dt est donnée par / Py(t)dt, ou P, est le polynome qui
a a + b a

interpole f en xy =a, 1 = et r9 = b. P, est donné par

Py(t) = f(a) + fla )z — ) + flo. "5 (e  a)(z ~b).

Aprés intégration, on trouve

[ v =50 (@ + 4750 4 50)

La méthode de Simpson est d’ordre 2 au moins. Montrons qu’elle est exacte-
ment d’ordre 3.
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Proposition 3.9 La méthode de Simpson est une méthode exactement d’ordre
3.

Preuve Par construction, la méthode est une méthode d’ordre 2 au moins.
Montrons qu’elle est d’ordre 3.
Posons f(z) = 2. On obtient d’une part

b b4 CL4
/a\ f(t)dt - Z - Z

et d’autre part
b—a

] ] 1 ]
344 3,13 _ 3., % 3., 13
5 + (2 )’ +b 5 M<+2a+b)+b)
b—a,3 5 3 3 gt
= ° B+ 2a2 + Sab?) = — — —
5 (2a —|—2 + —a —|—2a) 1 1

D’aprés la proposition 3.6, la méthode est donc au moins d’ordre 3. Montrons
qu’elle n’est pas d’ordre 4.

Etape 1. Casoia=—-1et b= 1.

Posons f(z) = 2%, a=—1et b=1. On a alors

b 5 5
b a 2
Hdt = — — — = =.

b—a, , 1 2
- b + 4. = =,
: m+2m+)+) 3

On en déduit que la méthode n’est pas d’ordre 4 dans ce cas.

D’autre part,

Etape 2 Cas ou a et b sont quelconques.
Posons t = ¢(z), x € [—1,1] ol ¢ est définie en (2.24). On a alors d’aprés
I’étape 1

/11 flonde == /ab oo Byt # (fo¢‘1<a> Fafos (120) fo¢‘1(b)) |

Par conséquent, la formule n’est pas exacte si on choisit g(t) = fop1(t), ce
qui démontre que la formule n’est pas d’ordre 4.

a+b
2

Remarque 3.10 On montrera un peu plus loin que pour f € C*([a,b]),
l’erreur dans cette méthode est donnée par

B(s) = 10

La méthode de simpson, en raison de la simplicité de sa mise en oeuvre et de
sa précision est la plus utilisée par les calculatrices pour tous calculs approchés
d’intégrales de fonctions explicites.

) 77 e]a7 b[
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3.3 Meéthodes composites

3.3.1 Meéthode composite des rectangles

b—a o
Soit N € IN*. On pose h = N On pose x; =a+1tht=20,--- ,N. On
va appliquer la méthode des rectangles exposée précédemment sur chaque
intervalle [z;, z;,1]. D’aprés la proposition 3.7, on obtient

/w f(r)dzr = (z; — i) f(2io1) + f’(m)w, i €lTio1, i

donc d’aprés la relation de Chasles

/ f@)z =3 hie) + Y Fp =l

Proposition 3.11 L’erreur dans la méthode composite des rectangles est

donnée par /
POt ¢ fa.y), (3.6)

Preuve D’aprés la proposition 2.5 appliquée en posant g; = w,

obtient

on

xz (zi —wia)? B2, _ f'(n)(b—a)h
zf ! =2 oy = T0C 0k

d’ou (3.6).

3.3.2 Meéthode composite des trapézes

On procéde de méme qu’avec la méthode des rectangles. On va appliquer la
méthode des trapézes sur chaque intervalle [z;, x;11]. On a alors

/bf(t foz +f Iz—&-l h+z f// xH—l )3.

soit
N-1
/f p IO 03 o) + ()
avec N .
. - " (xi+1 — xi>3
B == 2 )
On
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Proposition 3.12 L’erreur dans la méthode composite des trapézes est don-

née par
")k (b — a)
12 ’

n € [a,b]. (3.7)

(Tit1—2:)3
12

(g; > 0 pour tout 7). On obtient alors que I'erreur

Preuve Appliquons la proposition 3.5 & Iexpression — S N ' £ (1)
en posant g; := W

est donnée par (3.7).

3.3.3 Meéthode composite de Simpson

On pose f;_1 = (5= et f; = f(x;). On obtient alors d’apres la remarque
(3.10)

z; h 4) : h\5
| f(z)dr = g[fi—l +4fi1+ fil = %
et en raisonnant comme précédemment, on obtient
N
) = § S a + 4y 440+ B
avec W .
B(p) = -T2 gy (35)

180

3.4 Applications

On considére

1 2
I:/ e “dx.
0

On veut obtenir une valeur approchée de I avec une erreur inférieure ou égale
a 1075, Combien faut-il prendre de points d’intégrations pour obtenir une
telle erreur lorsqu’on utilise la méthode des trapézes ?
Sur cet exemple, on a f(z) = e a=0b=1eth= % D’aprés (3.5),
Ierreur est donnée par

_["(n)

12N2’
Majorons I'expression max,co1]|f”(n)|. On a pour tout x € IR,

n € [0,1].

() =e " (422 =2) et fO(z) = e 42(3 — 22?).
On a f®)(x) > 0 sur [0, 1], donc f” croit sur [0,1]. On en déduit que
max | f"(n)| = max(|f*(0)],[f"(1)]) = max(2,2¢7") = 2.

n€l0,1]

47



Il faut donc choisir N tel que

soit

L’entier N = 409 convient.

Avec la méthode de Simpson, compte tenu de (3.8), l'erreur est de la forme

f(4)<77)m. On a pour tout = € IR,

fO(z) = 4€_I2(3 — 1222 +42) et fO(2) = 8:56_””2(—4:154 + 2022 — 15).

Etudions le signe de f®). Cette fonction est décroissante sur [0, /Z1] et
croissante sur [y/z1, 1] ot x; = %ﬁ. On en déduit que

max | f® ()] = max(|fY(0)], [f (V) [FY (1)) = 12.

n€l0,1]

L’erreur est inférieure a 107 si

12— <10°¢
(2N)4.180 — ’

soit
N > 8.035.

L’entier N = 9 convient.

3.5 Meéthode de Péano pour le calcul de ’erreur

3.5.1 Noyau de Péano

On considére la formule de quadrature Z A f(z;). On pose t, = max(t,0).
=0
On pose

R(f) = / DL SENIE!

La preuve du théoréme suivant repose sur la formule de Taylor avec reste
intégral (2.10).
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Théoréme 3.13 Soit n € IN. Sila formule de quadrature 37" A; f(x;) est
d’ordre n (exacte pour les polynomes de degré inférieur ou égal a n), alors
pour tout f € C""([a,b]), on a

/fdt— f(z;) /K FOD () at

K(t) = R (=01, (0= 1)} = { (a0 siz >
Preuve
On pose
™) (a
P(x) = f(a)+f/(a)($—a)+...+ f n‘( >($—a)”.

D’aprés la formule de Taylor avec reste intégral (voir théoréme 2.10), on
obtient
)

R(P) = R(P)+ R([ S gyar,

a

La formule étant exacte a ordre n, on obtient R(P) = 0. On a donc

"z —t)!

R(f) = R( / E R0 (1)),

a n!

Comme la fonction
FO ) (@ — )y

est intégrable sur [a, b] X [a,b], on a d’aprés le théoréme de Fubini

LR (/b FOD @) (z — t)”dt)
_1 (/ / £ (g dm_ZA / FOH (1) (2 ._t)gldt>

b
_ % (/ FOD()( / T 1) ZA i>dt> :/a K ()" (t)dt.

Définition 3.14 La fonction K définie dans le théoréme précédent est le
noyau de Péano d’ordre n de la formule d’intégration approchée considérée.

On déduit du théoréme 3.13, la proposition suivante :
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Proposition 3.15 Si le noyau de Péano d’ordre n associé a une formule de
quadrature est de signe constant, alors il existe ¢ € [a,b] tel que

b
= / K(t)dt. fD (). (3.9)
De plus,
’ 1 +1
K(t)dt = R(x —2").
/a ®) (n+1)! (z = 2™
Preuve
D’aprés le théoréme 3.13, on a R(f f K(t)f*+)(t)dt. Comme K est de

signe constant sur |a, b], d’aprés la deux1eme formule de la moyenne (3.1), on
obtient qu’il existe ¢ € [a, b] tel que

-/ K (0dh 1o ().

Appliquant (3.9) & f(z) = 2™, on obtient

/bK(t)dt _ b e,

(n+1)!

ce qui achéve la preuve de la proposition 3.15.

3.5.2 Exemple de calcul de noyau de Péano et estimation d’erreur

On considére la méthode des trapézes sur [—1,1]. Dans la méthode des
1

trapézes appliquée sur [—1, 1], on approche / f(t)dt par f(—=1)+ f(1).
—1

Proposition 3.16 Le noyau de Péano associé a la méthode des trapézes sur
[—1,1] est donné par
t*—1

K(t):%R[xH(x—t)Jr]: . tel-11)

L’erreur dans la méthode des trapézes sur [—1,1] est donnée par

2.0
21210).

Preuve Par définition, on a

K(t) = 3Rl (2~ 1).] = / (=t = (1= 1), = (-1 =),
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Par définition, on a (1 —¢)y =1 —tet (—1 —t); = 0. De plus,

/_1(:U—t)+d:v:/tl(x—t)dx: (1_2t)2.

1

On a donc
1 t*—1
K(t)==Rlz— (x—t),] = :
1! 2
Remarquons que le noyau de Péano K est de signe constant (négatif) sur
[—1,1]. D’aprés la proposition 3.15, on en déduit 'expression de 'erreur

suivante :

b
R(P = [ FP0OK @ = 20). 5 R?)
On a

! 2 4
-1

Lerreur dans la méthode des trapézes sur [—1, 1] est donnée par

2
_Z2r@
S1(Q).
On retrouve bien la formule donnée en (3.5) en posant a = —1 et b = 1.

Proposition 3.17 Le noyau de Péano de la méthode de Simpson localisée
sur [—1,1] est donné par
(1 — [¢)°(1 + 3¢])

K(t) = — = .

L’erreur dans la méthode de Simpson sur |a,b] est donnée par :

(b—a)®

(4)
25.90 240

E(f) = -

Preuve Etablissons ce résultat pour ¢t > 0 (le cas t < 0 est laissé au lecteur
en exercice). Par définition du noyau, on a pour ¢t € [—1, 1]

1

k)= ¢ ([ = ttir - Lor-ny+ 5ot + 0 -0t).

Pourt > 0,ona (—1—1t)y =0, (—t)3 =0et (1—t)3 =1—¢> Par ailleurs,

/t(x—t)idxzo et /tl(x—t)idx:/tl(x—t)?’dx: (1;t)4.

-1
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On en déduit que

K(t) = % (%_%(1_@3) — _(1_75)7(21—1-3@.

On observe que K est de signe constant sur [—1,1]. D’aprés la proposition

3.15, on a
1

R(f)= | K@®)dt.fP(¢), ¢el[-11].

-1

De plus,
/11 K(t)dt = %R(:&).
Comme ) ) - , 1
[ K@= fra = ([ sae- -5
on obtient

1
R(f) = =557 (3.10)
Traitons le cas général & partir de ce cas particulier. Soit f € C*([a,D]) et
b
effectuons le changement de variable t = ¢(z) := 5% + 2 dans / f(t)dt.
On a dt = b’T“dx. Posons g = fo¢. On obtient alors

B() = [ foo(a) "5 %o = " f00(=1) + 4700(0) + foo(~1)
=25 stadde = Go(=1) + 3900) + 3o(-1)

donc d’aprés 1'estimation d’erreur obtenue en (3.10), on déduit que

__b—al 4
B(f) = -2 L g0)
(b—a)* L
Or, g (z) = Tf( Jop(z). On en déduit donc que
b— 5
B() =~ 0 6(0))

On a bien retrouvé ’estimation annoncée dans la remarque 3.10.
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3.6 Formules de Newton-Cotes
3.6.1 Formules de Newton-Cotes de type fermé
Soit n € IN*. On souhaite généraliser le travail effectué précédemment dans

le cas m =0, n =1 et n = 2. Plus généralement, on approche / f(t)dt par

b
/ P,(t)dt o P, interpole f aux points équidistants z; = a + th, h = b’T“,

i = 0,---,n. La formule de quadrature est donnée par
> affla+ jh), (3.11)
5=0

avec o = [P1;(t)dt, j =0,--- ,n. On a donc

/ F(t)dt = Za;f(a + jh) + E(f).

On pose

Proposition 3.18 On a

B = . 12
: n_j,n/OHyky (3.12)

k=0,k#j
De plus,
B!=1B,;, j=0,-,n
Preuve On effectue le changement de variable y = . On obtient puisque

r=a+hyetxy=a+kh

n n

I[J] @G—z)=0" T[] -k
k=0,k+j k=0,k+j
et " .
I @-z)=nr J] G-k =nr"(=1"7jl(n—j)
k=0,k#j k=0,k#j

On en déduit que




et comme b — a = hn, on déduit (3.12).

Pour obtenir 'égalité B} = B,,_;, on calcule B} ;. On a

N n (n—7)
By = /0 (y — k)dy,

k=0,k#n—j

donc comme [} 42, ;(Y—Fk) = [T sz (y—7n+Fk) (effectuer le changement
d’indice k =n — k),

B;;_j: ) ln/o H y—n+k)dy.

k=0,k#]

On effectue le changement de variable u = n — y dans la derniére intégrale.
On obtient

BTTLL—j - Tl—j |n/n k)(_du)a

k=0,k#j

soit
n

[ et /On [T (- k)du.

TR+

Comme (—1)"* = (=1)"7J, on obtient le résultat désiré, ce qui achéve la
preuve de la proposition 3.18.

Les formules précédentes sont les formules fermés de Newton-Cotes de degré
n.

Concernant, ’étude de 'ordre de la méthode, on peut généraliser le travail
effectué avec n = 1 et n = 2 et établir le théoréme suivant :

Théoréme 3.19 La formule de quadrature (3.11) est d’ordre n si n est im-
pair, et d’ordre n+ 1 si n est pair.

Preuve On se bornera & montrer le résultat dans le cas ot a = —1 et b = 1.
D’aprés la proposition 3.5, la formule est au moins d’ordre n puisqu’elle est
de type interpolation a n + 1 points.
Supposons n pair, soit n = 2p. On a

E(ZEQIH—I) — / 2p+1dl‘ 22Bn 2p+1
—1

o4



1

Comme x — x?P*! est impaire, on a / 2T dz = 0. Rappelons que compte
-1
tenu de la proposition 3.18, on a B} = B_, et que d’autre part, par symétrie

de [—1, 1] par rapport a 0, on a
Tp—k = —Tptk, k:Oa , Dy

donc xp = —xp—g k= 0,---,2p. On obtient (car x, = 0)

2p p—1
n 2p+1 _ B 2p+1 2p+1
E Bz = E By, E By v, -
k=0 k=0 k=p+1
2p
2p+1 -
Effectuant le changement d’indice k1 = n—k dans E B w7 on obtient
k=p+1
L2 2p+1
E By oy = E By,
k=p+1 k1=p—1
2p
, 2p+1 .
Il en résulte que E Brz?™ = 0. Donc la formule est d’ordre n + 1 si n
k=0

est pair. On peut montrer qu’elle n’est pas d’ordre strictement supérieur a
n + 1.
On peut montrer que F(x?P72) £ 0 et E(z%) # 0 dans le cas ol n est impair

(n=2p—1).

Concernant I’étude de la convergence, on peut généraliser le travail effec-
tué pour n =1 et n = 2 et établir le théoréme suivant :

Théoréme 3.20 L’erreur dans les formules de Newton-Cotes est en O(h™t1)
si la formule est d’ordre n avec n impair et d’ordre O(h"™2) si n est pair.

3.6.2 Meéthode de Newton-Cotes de type ouvert

On peut construire aussi des formules de Newton-Cotes en ne prenant pas
les extrémités de 'intervalle d’intégration comme abscisses d’interpolation,
ce sont les formules de type ouvert.

Une exemple est donné par la méthode du point milieu. On approche
f f(t)dt par (b — &)f(aTer). La méthode composite du point milieu s’écrit
sous la forme

n—1 n—1
T; + x5 T; +T;
Spi= Y (win —w) f(— ) =h Y f(5—)
=0 =0



On peut montrer la proposition

Proposition 3.21 Soient f € C?*([a,b]) et M := max,eoy |f"(z)]. On a

[’tnégalité
b Mh2(b —
| / foyit 5, < M=)

Preuve
Etape 1 Posons n = 1. On note ¢ = “2. Comme f;(a: —c)f'(¢))dz =0, on
a que

b
(b—a)f(c) = / ((0) + (& — &) f'(c))da.

On a alors

b b
[tz = 0= 10 = [[(1@) - 10 - @ - ) f @)
D’aprés la formule de Taylor-Lagrange a lordre 2 (2.9) appliquée au point

x = ¢, on déduit qu’il existe 6 €]0, 1] tel que

@) (e —0)x
£o) ~ £0) — (2~ ) e) = L0 0T e

Comme |f"(z)| < M pour tout x € [a, b], on obtient la majoration pour tout
x € [a,b]

Intégrant 'inégalité entre [a, b], il vient

b b . 5
| / f(@)de — (b= a)f ()] < 5 / (@~ e = 1O

Etape 2 Cas général.
D’aprés la premiére étape appliquée en posant a = x; et b = x;,1, on obtient

Lit1 Tit1 -+ Z; Mh3
[ e - np P < S

Appliquant alors la relation de chasles entre a et b, on obtient

b n—1 Tit1 T; + Tt
[ s =150 swa-

puis par inégalité triangulaire

b n—1 3 2

Mh M(b—a)h

tdt — S, < = .
!/Gf() \_;:0 51 51

o6



3.7 Convergence et stabilité

Les formules de quadrature s’expriment en fonction du paramétre n. Il est
raisonnable de penser que si n augmente, on obtienne un résultat plus précis,
et a la limite, on obtienne la valeur exacte de I'intégrale. On considére dans la
suite que les points x; (i € {0,--- ,n}) dépendent également de n et on note
les points d’intégration par z'. On supposera que z' € [a,b] ((a,b) € IR?)
pour tout ¢ et pour tout n € IV.

Définition 3.22 On dit qu’une formule de quadrature L,(f) = Z AL f ()

converge sur un ensemble V' si quel que soit f € V on a :

n b
Jdim SR = [ fws
k=0 a

On pose pour n € IN
b n
— [ fde = 3" apfap).
a k=0

b
Remarque 3.23 Dans le cas d’une approzimation de/ f(t)dt par/ P,(t)dt

ot P, désigne le polynome de Lagrange qui interpole f auz points (x;),
1=0,---,n, ona

b
A?:/ L0t Wi=0,--.n

ou L désigne le i-ieme polynome élémentaire de Lagrange auz points (z;).
Les points x; dépendent du parameétre n puisque x; = g —i—z'b;—a (on les notera
done xl').

Nous allons par la suite donner une condition nécessaire et suffisante
pour qu’une formule de quadrature de type interpolation converge. Ceci
nous conduit a introduire la notion de stabilité.

3.7.1 Stabilité
Pour qu’une méthode soit jugée bonne, il est nécessaire qu’elle soit peu sen-
n

sible aux erreurs de calcul. Dans une formule de la forme ZAZf(m’,;‘), les
k=0
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erreurs que 'on peut commettre portent sur les f(z}). Il faut donc évaluer
la différence entre un calcul effectué avec f(z}) et un calcul effectué avec
f(z}) + €, c’est-a-dire évaluer :

DAV +e) = Y ALf(aR) = At
k=0 k=0 k=0

Définition 3.24 On dit qu’une formule de quadrature de la forme L, (f) =
Yoreo Arf(x}) est stable si il existe une constante M > 0 indépendante de

n, telle que pour tout (€g, €1, ,€,), ON @
n
Al < M . 1
Ikz_; ter < M max ey| ¥n € (3.13)

On peut alors établir le théoréme

Théoréme 3.25 La formule de quadrature Y, _, A7 f(z}) est stable si et
seulement si il existe une constante M > 0 telle

d AR <M, Vnel. (3.14)

k=0

Preuve La condition est suffisante puisque

n n
|A%||ex| < max |eg] |A%| < M max |e].
k k k k
k=0

k=0

Montrons qu’elle est nécessaire. Raisonnons par contraposée. S’il n’existe pas
de constante satisfaisant (3.14), alors pour tout M > 0, il existe n(M) € IN
tel que

714 > M
k=0

Il existe donc une fonction ¢ croissante définie sur IV et & valeurs dans IV
telle que

n—-+00

B(n)
lim 37|47 = +oo.
k=0

Pour construire ¢, il suffit de faire varier M en posant successivement M =
1,2,3,---. On pose alors ¢(n) := n(M).
Pour k € {0,--- ,¢(n)} tel que Ai(") # (), on pose

_a

€ = ’

o(n
A7)
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et ¢, = 0 sinon. Donc maxjeo,... ()} l€x] = 1. On a

#(n) #(n)
> Al = 3 147 - oo
k=0 k=0

quand n tend vers +o0o, ce qui contredit (3.13).

3.7.2 Convergence

Nous donnons par la suite une condition nécessaire et suffisante pour que
la formule de quadrature introduite a la définition 3.22 soit convergente. La
preuve nécessite d’avoir recours au théoréme de Banach-Steinhauss, que nous
admettrons. Son énoncé est le suivant :

Théoréme 3.26 Soient E et F deux espaces vectoriels normés complets.
Soit (f,) une suite d’applications linéaires continues définies sur E & valeurs
dans F telles que, pour tout v € E, on a

sup || (@)l] < +00.
nelN

Alors

fn$ r
sup || foll < 400 ([[fall := sup M)‘
nely w0 ||Z|E

On rappelle également que I'espace vectoriel des polynémes est dense dans

(C°([a, ), [I-lloc)-

Théoréme 3.27 Soit f € C%([a,b]). Pour tout € > 0, il existe P € R[X]
tel que
I/ = Plloo <€

On rappelle enfin qu’une application linéaire définie sur un espace vectoriel
normé E a valeurs dans un espace vectoriel normé F’' est continue sur F si et
seulement si il existe £ > 0 telle que

If (@) < klzlle, Voe k.

Le théoréme suivant fournit une condition nécessaire et suffisante pour que
la méthode de quadrature soit convergente.

Théoréme 3.28 Une condition nécessaire et suffisante pour que la formule
de quadrature y ;. AP f(x}) soit convergente sur C°([a,b]) est que

(2
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e i. IM >0, YU |AM <M, VnelN.
e ii. VN €N, lim, o E,(zV) = 0.

Preuve
Montrons que la condition est suffisante. Soient € > 0 et f € C%[a,b]).
D’aprés le théoréme 3.27, il existe P € IR[X] tel que

€
I
17 =Pl < g5 —a)

D’autre part, par linéarité de f — E,(f), on a
En(f) = Ex(f — P) + En(P).

Il existe m + 1 réels [3; tels que

D’aprés ii., pour tout i € {0,--- ,m}, E,(x%) tend vers 0 quand n tend vers
+00. On en déduit qu’il existe ng tel que, pour tout n > ngy on a

|En(P)] < % (3.15)

Par ailleurs, on a par inégalité triangulaire

Balf ~ P) b
< IS AX(FGT) = PG|+ J7 () = PW)ldt < 1f = Pl (SLo |47 + (6= a).

et d’aprés ii., on obtient alors

Bulf = P)| < (M +b=a)|f = Plx < 5. (3.16)

D’aprés (3.15) et (3.16), on déduit que pour tout n > ng, on a

|En<f)’ <e

La convergence de la méthode est donc établie.
Etablissons & présent la réciproque. ii. est alors vrai puisque x — z? est une
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fonction continue sur IR. Prouvons i.

Pour tout f € C°[a,b]), la suite de réels (E,(f)) converge, donc elle est
bornée. D’autre part, f — FE,(f) est linéaire continue sur C°([a,b]). En
effet, pour tout f € C%[a,b]), on a

b
| / F(t)dt] < (b — a)|[fll

et
> AT <D AT Fllso
i=0 i=0

donc, on en déduit que

Ba(NI < (0= a)+ 3 [ATDF o

Les espaces E = (C%[a,b]), ||.||) ¢t F' = IR muni de la norme |.| sont des
espaces complets. D’autre part, comme la suite (E,(f)) converge vers 0
pour tout f, elle est bornée. On peut donc appliquer le théoréme de Banach-
Steinhauss (voir 3.26) avec f, := E,, E = (C°([a,}]),|-||) ¢t F = IR muni
de la norme |.|. On en déduit qu’il existe C' > 0 tel que

|E. <C, VnelN. (3.17)
Considérons alors une suite de fonctions (f,,) (fn € C°([a,b]) pour tout n)

telle que || f.||co = 1 pour tout n € IN et f,, (") = 181 A? > 0et f,(2) = —1
si A7 < 0. On a alors

n n b
SO1AT = ST AL fu (@) = —Eu(f) + / £ (2)dz.
=0 7=0 a

D’aprés (3.17), on en déduit que

i|A?|§C’+b—a.

1=0

Alinsi, i. est réalisé avec M = C' 4+ b — a, ce qui achéve la preuve du théoréme
3.28.
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3.8 Formules de Gauss
3.8.1 Polynéme orthogonaux

Dans cette section, une fonction poids est une fonction définie sur un ouvert
la,b[ de IR & valeurs réelles, positive et intégrable sur |a, b|.
Dans la suite, on considére le produit scalaire

b
(f.9) = / f(@)g(x)w(z)dz, (3.18)

ol w est une fonction poids.

Définition 3.29 Une suite de polynomes (P,) est une suite de polynomes
orthogonauz si

e degP, =i, Vie N,
e (P, P)=0V(i,j) € IN? i#j.

Proposition 3.30 Une suite de polynomes (P,)nen telle que degP, = n
pour tout n € IN constitue une base de IR[X].

Preuve Montrons que le systéme {P, Py, -+, P,} constitue une base de
R,[X] pour tout n € IN. Le résultat est vrai pour n = 0. Supposons le
résultat vrai pour U'entier n — 1, n > 1, n quelconque. Considérons I'égalité

1=0

On a
n—1
anPn = - E aiPi>
1=0

et par hypothése (deg P, = 4) le degré de — S27~ oy P; est inférieur ou égal
a n — 1. Par conséquent, 1'égalité précédente ne peut étre satisfaite que si
a, = 0. Par hypothése de récurrence, on en déduit que oy = a1 = --- =
a,_1 = 0. Donc le systéme Py, Py, -- , P, constitue une base de IR,[X] parce
qu’il compte n + 1 vecteurs constituant un systéme libre dans un espace vec-
toriel de dimension n + 1.

Le premier objectif est de construire une suite de polynémes orthogonaux
pour le produit scalaire (3.18). Cette construction repose sur le procédé
d’orthogonalisation de Gram-Schmidt.

On a la proposition fondamentale suivante :
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Proposition 3.31 Quel que soit le poids w intégrable sur |a,b], il existe une
suite de polynomes orthogonaux (P;) au sens de la définition 8.29. La suite
constituée des polynomes Py(x) =1 et pour n > 1

n—1
P,(x)=2a" — Z cin s
i=0
avec pour i =0,--- n—1
(=", B)
T (B P) (3:19)

satisfait les deux conditions de la définition 3.29.

Preuve On construit cette suite de polynomes & partir des vecteurs de la base
canonique de IR[X] par le procédé d’orthogonalisation de Gram-Schmidt. On
pose Py(xz) = 1. On construit P; en déterminant le projeté de z sur la droite
engendrée par le vecteur 1. Le projeté orthogonal de x noté P(1) appartient
a la droite vectorielle engendrée par 1 (donc il s’écrit sous la forme al) et
satisfait

(z — P(z),1) =0,
donc
(z,1)
(1,1)°

Le polynéme P; recherché est donc défini par

& = Co1 =

P(x)=x—coy.

Supposons avoir déterminé les vecteurs Py, Py, -+, P, (n > 1). On projette
le vecteur z"™! sur I'espace vectoriel vect(P, Py,--- , P,}. Notons P(z™!)
n+1

le projeté orthogonal de x"*!. Ce vecteur s’écrit sous la forme P(z"*!) =

Yoo Py, et il satisfait
(2" — P(2"™),0) =0 Vo € vect(Py, Py, -, Py),
et en particulier en prenant v = P; (je {0,--- ,n}), on obtient :
(@~ P(a™). P) = 0.

On en déduit que
(a"" —a; Py, ) = 0,

donc "
)

(PP
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Le vecteur P,,; défini par 2" — P(x”“) est orthogonal & P; pour tout
i=1,---,n. On en déduit (3.19).

Dans la suite, on note par a, le coefficient du mondéme de plus
haut degré de P,.

Remarque 3.32 Sion posea=—1,b=1etw =1 dans (5.18), on obtient
les polynémes orthogonaux de Legendre.

Si on prend a = —oo et b = +00, et w(x) = 6_352, on obtient les polynomes
orthogonauzr de Hermite.
Enfin, avec le choix a = —1,b=1 et w = \/1;_7, on obtient les polynomes

de Tchebychev.
Proposition 3.33 Soit k,n € IN*, k <n. Si P € IR;[X], alors on a
(P,,P)=0.

D’autre part, si P € IR[X] est de degré n et si P € IR, 1[X]*, alors il existe
C € IR* tel que P, = CP.

Preuve Il suffit d’écrire P dans une base de IRy [X] constituée de polynomes
orthogonaux. On a alors

k k
(P, P) = (Pn, > oxPi) =Y an(Pi, P) = 0.
=0 0

1=

D’autre part, si P € (IR,—1[X])* et deg P = n, on a P = > ' ;a;P; et
(P, P;) = aj =0 pour tout j =1,--- ,n — 1 d’ot le résultat.

On peut alors montrer que le polynéome P, admet n racines simples dans
Ja, b].

Proposition 3.34 Soit n € IN*. Le polynéme P, admet n racines simples
dans ]a, b].

Preuve

Soient 1, 9, -+ ,x; les racines distinctes de P, se trouvant dans |a,b[. On
a j < n. Supposons j < n. Le polynéme P, va changer de signe en toute
racine de multiplicité impaire. Posons pour 7 > 1

J
Qz) = H(x —2)® ou e(k) = 1 sizy est de multiplicité impaire, 0 sinon
k=1
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etsij=0, Qx)=1.
On remarque que le produit P,Q ne change pas de signe dans |a, b| et que
deg ) < n —1. On a donc d’apreés la proposition 3.33

(Fn, @) =0,

ce qui est impossible donc 7 = n. Conclusion : Toutes les racines de P, sont
dans Ja, b] et sont simples ce qui achéve la preuve de la proposition.

On peut également établir la proposition suivante :

Proposition 3.35 Les polynomes orthogonaux vérifient une relation de récur-
rence a trois termes

Py = Aj(x — B)Pi(x) — C;P_1(x), i € IN (3.20)
ol
Ai _ ai-‘rl’ BZ _ <$P17 R)) C,L _ AZ(-P’U -F)Z)
Qa; (Pz‘, 1Di> Az’—1(Pi—1, Pi—l)

et

P_l(ZE) = 0.
Preuve
On considére le polynoéme Q,, = P,,.1 — A,z P, et on pose

A, = ol

Qp

Avec ce choix de A, @), est de degré n. Ecrivons ce polynéme dans la base

PO; Pl; 7Pn
i=0
Nous avons pour j =0,--- ,n
Oéj = (Qn; PJ) = (Pn+1,Pj) — An(l’Pn,Pj) = —An(Pn,l'.Pj>
Mais (P,,xP;) = 0 pour tout j =0,--- ,n — 2, donc
Qn = O-/nPn + O‘n—an—l-

Déterminons «, et a,_1. Nous pouvons écrire

Ap—1

P, 1 = P, + gn-1,

n
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ot le degré de ¢, 1 est inférieur ou égal a n — 1. On a
(Qm Pn—l) = (Pn+1 - Anxpm Pn—l) = Qp—1

ou encore

O-/n—1<Pn—1a Pn—l) - _An(Pna xPn—l) - _An(agil Pn+£]n—17 Pn) - _AnE(Pna Pn)

n aTL

Donc
Ay (P, Py)

An71<Pn717 Pn71> '

Op—1 = —
Déterminons a présent «,,. On a
(Qm Pn) = (Pn+1 - Anxpm Pn) = _An(xpm —PH) = OCn(RL; Pn)u

donc
An.(xP,, P)

(Pn, Po)

oy = —

On en déduit (3.20).

3.8.2 Formules de quadrature d’ordre maximal

On considére une formule de quadrature générale Y . A f(z;). L'objectif
est de choisr les (\;) et les (z;) de telle sorte que la formule de quadrature
soit d’ordre le plus élevé possible. Nous savons d’aprés la proposition 3.5
qu’une condition nécessaire et suffisante pour que la formule soit d’ordre
n — 1 (attention, ici, nous travaillons avec n points au lieu de n 4 1 points)
est qu’elle soit de type interpolation. Il a été établi dans cette proposition que
A\ = fab L;(t)dt ou [; est le iéme polynome élémentaire de Lagrange. L’objectif
est de choisir les (z;) au mieux de telle sorte a rendre I'ordre de la formule le
plus élevé possible. La réponse a cette question est donnée dans le théoréme
suivant :

Théoréme 3.36 L unique formule de quadrature a n points d’ordre mazimal
est la formule par interpolation construite en prenant pour noeuds les zéros
du n-ieme polynéome orthogonal construit dans la proposition 3.31 par rapport
au poids w. La formule ainsi déterminée est d’ordre 2n — 1. Elle est dite
formule Gaussienne.

Preuve
Soit P, le n-iéme polynome orthogonal défini dans la proposition 3.31 et
Pe Rgn_l[X]. On a

P=PF,q+r,
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r polynome de degré inférieur ou égal & n — 1. Soient x; les zéros de P,.
Montrons que la formule est bien d’ordre au moins 2n — 1. Compte-tenu des
degrés respectifs de P, et ¢, on a d’aprés la proposition 3.33

/ P, (z)q(x)w(z)dx = 0.

D’autre part, comme P,(x;) = 0 pour tout j =1,--- ,n et que

b n
/ r(x)w(x)dr = Z Ajr(x)

puisque la formule est de type interpolation, on a
b b b
/ P(z)w(x)dx = / P, (z)q(x)w(z)dz +/ r(x)w(z)dr
=Y N Pax)a(zs) + Y Nr(wg) = Y\ P()).
j=1 j=1 j=1

La formule ainsi définie est donc au moins d’ordre 2n — 1.
Elle n’est pas de degré 2n puisque

b n b
/ P, (2)*w(x)dx — Z NP, (z;)% = / P, (x)%dx # 0.

a

Réciproquement, considérons une formule de quadrature exacte d’ordre k >
2n—1, notée Z?Zl pif(y;). Comme k > n, on a vu que 'on a nécessairement

b
g :/ l]<t>dt7 \V/] S {17 7n}'

Montrons a présent que y; = x; pour tout j =1,--- ,n.
Considérons le polynome p(z) = [[/_,(z — y;). Pour tout P € IRs,_1[X],
(degP >n), on a
P=pQ+r
avec degr < n — 1. On obtient alors

n

/ P(z)w(z)dx = / ﬁ(x)Q(x)w(x)da:—l—/ r(z)w(z)dr = ZP(yj)uj = Zr(yj),uj.

i=1

On a dOIlC nécessairement
b
/ H(2)Q(x)w(z)dr = (5,Q) = 0.
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Le polynéme P étant quelconque, on a montré que

b
/ H0)Q)w(x)de = (5.Q) = 0. ¥Q € Ry_1[X].

Il résulte de la proposition 3.33 que p = kP, (k # 0) et par conséquent, les
racines de P, sont égales a celles de p, autrement dit, y; = x; pour tout
j = 1a e, N

On peut alors obtenir I'estimation d’erreur suivante :

Théoréme 3.37 Pour f € C*"(a,b]), erreur de quadrature dans la formule
de Gauss est donnée par

b n @2n) (o) [0 "
/a f(z)dx — ;)\jf(xj) = ]0(2—71()')/(1 E(m —x;)%dr, o« €la,b]. (3.21)

Preuve
Considérons le polynome de Hermite Hs, ; interpolant f en x1, 2o, .-, x,.
On a montré que lerreur f(z) — Hop—1(z) est donnée par

(2n n

f(x) — Hopy () Ha:—xz

=1

Intégrons I’égalité précédente entre a et b. D’aprés la deuxiéme formule de
la moyenne, on obtient

- @) (o) [P
[ 2 = T [ i, ot

=1

D’autre part, comme la formule est d’ordre 2n — 1 et que le degré de Hs, 4
est égal & 2n — 1, on obtient

[ Has@)s(o)ds = 37 Harmalads = 3 fas

ce qui achéve la preuve du théoréme 3.37.

Exemple

Siw(x) =1a=—1et b= 1, les polynomes orthogonaux de Legendre sont
donnés par Py(z) =1, Pi(x) = x, Po(z) = 2% — % Pg( ) =2 — 2z, .. Les
racines du polynoéme P, sont données par — \}g \/g On pose z1 = f et
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1

Ty = % Les nombres \; et Ay sont égaux respectivement a / lo(t)dt et
~1

V3 Lo
/_1 Li(t)dt. On a ly(z) = 7(% + %), d’ott on déduit que

/_11 o(t)dt = 1.

On montre de méme que A\ = 1. Il en résulte que la formule de quadrature
a deux points (avec le choix a = —1 et b = 1) s’écrit :

/f f)+f(f)

D’aprés le théoréme 3.37, on déduit qu'il existe ¢ €] — 1, 1] tel que

(4) 1
£ =15 [ @ Jorte - e = 190

3.9 Méthode de Romberg

Dans cette partie, 'objectif est de déterminer une méthode permettant d’accélérer
la vitesse de convergence de la méthode des trapézes. La méthode présentée
ici est due a Romberg.

3.9.1 Polynémes de Bernouilli

Proposition 3.38 [l existe une unique suite de polynomes (By,) tels que
Bo(z) =1 et
Bl () =nB,_1(z), Vn e IN* (3.22)

et

1
/ Ba(x)dz = 0. (3.23)
0
Les nombres b, = B,(0) sont appelés les nombres de Bernouilli.

Preuve On construit les polynémes par récurrence. By est défini. Supposons
B,,_1 construit pour n > 1. Alors

B.(z) = n/ B,_1(t)dtdx + k
0
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ol k est & choisir de telle sorte que (3.23) soit vérifié. k est donc déterminée
de facon unique en posant

1 T
k= —n/ / By, (t)dtdzx.
o Jo

On peut alors établir la proposition suivante :

Proposition 3.39 Pour tout n € IN, on a
(=1)"B,(1 — x) = By(z). (3.24)

De plus, on a

Preuve Observons que By(1) = By(0) et montrons que pour tout n # 1, on
a
B, (0) = B, (1). (3.26)

En effet, pour n > 2, on a d’aprés (3.22)

Ba(1) — Bo(0) = /1 B (t)dt — n/l By (t)dt = 0.
On pose ¢,(z) = (=1)"B,(1 —z). On a ¢o(x) =1 et
d(z)=(-1D""B (1—2)=(-1)""nB,_1(1 —2) = nec,_1(z).
Enfin, X )
/O 0 () — /O (—1)"B,(1 — 2)dz = 0.

Par unicité de la suite des polynomes de Bernouilli définis dans la proposition
3.38, on déduit I'égalité (3.24). D’autre part, pour n # 1, on a d’apreés (3.24)
et (3.26)

bn = (_1>nbna

d’on (3.25).

3.9.2 Formule sommatoire d’Euler Mac Laurin

En premier lieu, établissons la formule sommatoire d’Euler Mac Laurin.
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Théoréme 3.40 (Formule D’Euler-Mac Laurin) Soient m,n deuz entiers
tels que m < n, soit r € IN* et f € C"(Im,n]). On a

S|
~
N3

)

) = £ )

/f -+ 5 (F0m) + F(n)) +

=
Il

r+1
g

, /mewwu

7! m

) N (3.27)
o B,(t) désigne la fonction 1-périodique qui coA ncide avec B, sur [0, 1] et

E(x) désigne la partie entiére de .

Preuve On procéde par récurrence sur r. Supposons 7 = 1. On a

1
By(x) =z — 5
Pour k € {m, -+ ,n—1}, considérons la fonction By sur [k, k411 Prolongeons

la fonction B; a gauche de k + 1 par continuité en posant Bi(k+ 1) =1 (la
fonction ainsi obtenue est de classe C' sur [k, k + 1], on la note 31 par
commodité).

Pour tout k£ € {m,---,n — 1}, une intégration par parties sur [k, k + 1]
appliquée aux fonctions de classe C* f et By conduit a

k+1

S0+ ) - [ B o

f®ﬁ=é+E@WW=

k

Donc, en sommant sur k, on obtient

[ s = 5m + ) + 3 0 - [ 0B,

k=m m

ce qui établit la formule dans le cas r = 1.
On suppose la formule démontrée a un rang r > 1. Soit f € C™!([m,n]).
D’aprés (3.24) et (3.26), la formule d’intégration par parties donne

[ Bensow = B2 oy [ el g

b, "B,
= (1) = 1) - [P e
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On a utilisé le fait que B,,1(m) = B,41(0) pour tout m € IN, m > 2.
Par hypothése de récurrence, on en déduit que

BE(3)

— [ 5w+ 5(50m) + +§jl% 70 m) — £ om)

e by ”Br

(3.28)
En distinguant le cas ou r est pair du cas ol  est impair, et en utilisant le
fait que bgp1 = 0 pour tout p € IN*, on obtient la formule (3.27). En effet,
si r est pair, alors r + 1 est impair et by, = 0. L’égalité (3.28) devient

/f dt+ (Fm) + £() + > 2 (£@D () = =D (m))

+$i)/’&ﬂwﬂ”Wﬂﬁ

ce qui établi (3.27) dans ce cas. Sir est impair, r = 2t+1 alors r+1 = 2t +2
t (3.28) devient alors

t

/f‘dm— f(m) +§jb” FED () — ) (m))

r+2 ~ r
+£$ﬁﬂM1m)¢W”Wmﬂ+%%v/ &+®f+W)M
ce qui est le résultat attendu.

La formule d’Euler Mac-Laurin a de trés nombreuses applications. Elle
permet notamment d’obtenir un développement asymptotique de certaines
suites. Un exemple d’application est donné par la détermination d’'un développe-
ment asymptotique de la suite (u,) définie par

"1
Uy = — —Inn,

k

=1

qui est une suite convergente (elle converge vers la constante d’Euler ). On
a la proposition

Proposition 3.41 1l existe v > 0 tel que pour tout r € IN*, on a quand
n — 400
1 by 1 1

Up =77+ —— —

o o + Ol (3.29)
p=1
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1
Preuve La formule d’Euler-Mac Laurin appliquée a la fonction t — n au

rang 2r + 1 avec m = 1 s’écrit

1 1 &b 1 " Bo(t
Z de 1.1 _ ﬁ.__li/iﬂuﬁ
E ), t 2 2n ! 2p \ n? N

Comme la fonction Bs,.,; est bornée sur IR, la fonction t — Bi;‘,f +12(t) est

intégrable sur [1,4o00[. En notant

- b2p Bzr+1
T = t2r+2 2

on obtient
1 | 0 By (1)
%”%+%_§§H%+L e

Comme 5 — > Z’;—;# — 0 quand n tend vers +oo et
T Byt
lim —QTH( )

n—+oo [ t27’+2

dt =0,

on en déduit que la suite (u,) converge vers 7,, et par unicité de la limite,
7, est indépendant de r. Ainsi, on a établi (3.29).

Une autre application de la formule sommatoire d’Euler Mac Laurin et qui
nous conduira vers la méthode de Romberg est la Suivante On considére un
entier N € IN*, (a,b) € IR? (a < b) et on pose h = 2. Soit f € C*([a,b]).
On considére la méthode des trapézes composites pour approcher I'intégrale
de f entre a et b. On pose

Ty(h) =

l\le‘

(Fla)+ ) + S Fla+ kh). (3.30)
k=1

Théoréme 3.42 Soit r € IN*. Il existe des réels (ai)lgiSE(%) tels que

E(3)

/ f(x)dx —T¢(h Z a;h* + O(h"). (3.31)

L’erreur admet donc un développement en puissances de h?.
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Preuve Appliquons la formule d’Euler Mac Laurin a la fonction g définie sur
IR par g(u) = f(a+ uh) entre m = 0 et n = N. D’aprés (3.27), on obtient

> fla+kh) = / fla+uh)du + %(g(N) +9(0))
k:%(%) 0 r+1 N
+ ; (g;!(g@pl)(]\]) — g(2p71)<0)) + (_1)! /0 Br(t)g(r)(t)dt,

ou encore comme / f(a+ uh)du = / f(z)dzx (effectuer le changement
de variable x = a + uh) et g™ (u) = f(")(a + uh).h"

N

Z fa+kh) = /f da:+ (f(b) + f(a))

=0
E(3)

+ pz_; %(f@p—l)(b) _ f(2p—1)(a))h2p—1 (3.32)

N
+E0 / B,(£) ) (a + th)h' (t)dt.
0

Comme la fonction B, est bornée sur [0, N] (car 1-périodique) et comme f()
est bornée sur [a, b] (car continue sur cette intervalle), on obtient I'inégalité :

(_1)7“+1 N hr 1
— / B, (t) f") (a + th)h dt| < max | f*)(x)| max |B,(t )=
7l 0 z€(a,b] z€(a,b]
donc on a

| (o /N B,(t)f™ (a4 th)h"dt| = O(h"1).

On en déduit en multipliant les deux membres de 1'égalité (3.32) par h que

rl

-/ e+ 3 ah® +Or), (3.33)

avec

e %(f e ) — [V (a)),

ce qui établit que le reste admet un développement en puissances de hZ.
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3.9.3 Description de la méthode de Romberg

D’aprés I’étude menée sur la méthode composites des trapézes, et précisé-
ment l'estimation de 'erreur obtenue dans (3.7) (en supposant que b — a est
de lordre de quelques unités), pour assurer une précision de 107°, il suffit
que le pas h soit de 'ordre de 1073. Un tel calcul nécessitera une boucle
comportant au moins plusieurs milliers d’itérations et le calcul sera prop-
ice a des propagations d’erreur d’arrondis. La méthode de Romberg permet
d’accélérer la vitesse de convergence de de la méthode des trapézes. La
méthode de Romberg repose sur le procédé d’extrapolation de Richardson.
[’idée du procédé est de combiner plusieurs développements de Taylor d’'une
fonction v au voisinage de 0 pour déterminer v(0)avec I’erreur la plus faible
possible. Exemple : si v(h) = v(0) + c;h + O(h?), on a aussi pour un réel
r €]0,1], fixé (souvent r = 1) v(rh) = v(0) + c;rh + O(h?). On a alors

v(rh) —rv(h)

T =v(0) + O(h?).

On obtient ainsi une approximation de v(0) & un O(h?) prés au lieu d’un
O(h) prés. Cette combinaison linéaire permet donc d’obtenir une meilleure
valeur approchée de v(0).

Le théoréme 3.42 permet d’écrire en remplagant r par 2n + 1 (n € IN*) :

b
Th(h) = / F@OE— coh® — exh + - — cpnh® + O™, (3.34)

La méthode de Romberg débute par le calcul des approximations intégrales
de f pour les pas %, %, % .-+ que l'on dispose dans une colonne. On observe
que Don passe facilement de Ty(h) & Ty(%) (oo Nh = b — a) en ajoutant
les images des abscisses intermédiaires situées au milieu des intervalles de
subdivisions : Ty(%) = 1 (Ty(h) + M,) ou

M, = h (f(a—l— B) 4 fla+ 3 +---+f(a+w)). Le tableau de la
méthode de Romberg se construit a partir de la premiére colonne dont les

éléements sont notés Tog = Ty(h), Tio = Ty(L), -+, To = T(2) m € IN*.
On pose alors pour n =1,---,m
AT — T
Tnl _ ,0 1,0.
’ 4—1

Appliquant cette formule, d’aprés (3.34), on obtient par exemples

b
5
Tn= / F(t)dt + %h“ + 1gCoh" -+ O,
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b
cy  h 5 h

Ty = t)dt —ce(=)0 4 -+ O(R*H!

n = [0+ GG+ fplg) £+ O

Ainsi, on obtient une valeur approchée de fab f(t)dt a un O(h?) pres dans
le premier cas et & un O((%)") pres dans le second cas. On construit de
la sorte la deuxiéme colonne du tableau : elle est constituée des éléments

T11, T, , T Afin d’améliorer la précision de 'approximation, on peut
évaluer
24Ty, — T
T, = T /j‘ﬁ+0m%

On peut généraliser ce qui précéde en introduisant la formule de récurrence
pourk;:()’... 77*)/))—17 n:k+17... ,m

2k+2
2 + Tn,k - Tnfl,k
4k+1 _ 1 ?

Tn,k:Jrl =

qui permet de déterminer la colonne k+1 du tableau. La derniére valeur 75, ,,
fournit une valeur approchée de I'intégrale & O(h*™2) prés. En pratique, il
est inutile de calculer 15, ,,.

4 Reésolution de I’équation f(z) =0

4.1 Introduction

Dans toute la premiére partie, on considére une fonction f définie sur [a,b] &
valeurs réelles, continue sur [a, b] telle que f(a).f(b) < 0. D’apreés le théoréme
des valeurs intermédiaires, on sait que f admet au moins une racine dans
[a, b], notée .

Mis a part quelque cas simple, par I’exemple les équations ax? + bx +c¢ = 0
et az® +bx?+ cx +d = 0, on ne peut pas résoudre algébriquement I'équation
f(z)=0.

En pratique, on cherche donc une solution approchée de la solution [ en con-
struisant une suite numérique (u,) qui converge vers [. On se propose ici de
donner plusieurs méthodes de résolution de 'équation f(z) = 0. Une méth-
ode déjé abordée en L1 est la méthode de dichotomie, mais cette méthode
se révéle peu efficace, car assez lente (la convergence est “géométrique” de
raison ).

Nous présentons ici diverses méthodes de type point fixe, dont la méthode des
approximations successives. Cette derniére repose sur le théoréme du point
fixe. En pratique, on remplace 'équation f(z) = 0 par une équation équiva-
lente, par exemple = x — f(z) et on cherche les points fixes de I’équation
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g(x) = x avec g(z) = x — f(z). D’autres méthodes seront présentées, par
exemples la méthode de la corde ou encore la méthode de Newton. Nous
montrerons que la méthode de Newton se révéle la plus efficace lorsqu’elle
converge, la convergence étant quadratique.

Les problémes posés par 'introduction de telles suites numériques sont les
suivants :

1. La suite (z,) converge-t-elle 7

2. Si la suite converge, sa limite est-elle [ 7

Si la réponse a I'une de ces questions est non, alors la méthode considérée
n’est pas satisfaisante.

Un autre probléme se pose : si on veut calculer la solution a e prés, combien
faut-il d’itérations pour y parvenir, et comment arréter les itérations dés que
cette condition est remplie 7

Dans une seconde partie, on envisage d’étudier le cas ou f est définie sur
un ouvert d’un espace vectoriel normé complet (éventuellement de dimen-
sion infinie) & valeurs dans un espace vectoriel normé Y. On généralisera la
méthode de Newton étudié dans le cas de la dimension un.

4.2 La méthode de dichotomie

On considére une fonction f définie sur [a,b] & valeurs réelles, continue sur
[a, b]. Soit (u,) une suite de [a, b] convergeant vers [. On rappelle (voir cours
de topologie) que d’une part, [ € [a, b] et que d’autre part, la continuité de f
entraine que

lim f(u,) = f( lim w,).

n——+00 n—-+00

On suppose dans cette sous-section ainsi que dans la suivante que la fonction
f posséde une unique racine notée [ dans l'intervalle [a,b]. La méthode de

dichotomie consiste & introduire a chaque étape le milieu du segment [a, b],
a+b

c= , puis & déterminer I'intervalle contenant la racine de f en ayant
recours au théoréme des valeurs intermédiaires. L’algorithme est donc le

suivant : on pose

b
ag=a, bp =0 et coza;— )

Si f(ap).f(co) < 0, alors d’aprés le théoréme des valeurs intermédiaires [ €
[ag, col, et on pose a; = ag et by = co, sinon, [ € [cy, by] et on pose a; = ¢q et
b1 = bo.

Pour n > 1, supposons déterminé les réels ag, - -+ ,a,_1, b, -+ , bp_1.
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A Détape n, on pose

Qp-1 + bn—l
Cpog = ————.
2
Si f(an—1).f(cn—1) < 0, alors | € [ap_1,¢n_1], €t on pose a, = a,_1 et

b, = Cy_1, sinon, | € [¢,_1,b,_1] et on pose a, = ¢,_1 et b, = b,_;.

Montrons que la méthode de dichotomie converge.

Théoréme 4.1 Les suites de réels (a,) et (b,) sont adjacentes, elles con-
vergent vers la solution de l’équation f(x) = 0. De plus, la convergence est
"géométrique”. Précisément, on a

| — ]

o= yhenw e by — 1] £ —— VYneN.

an, — 1] <

Preuve
Supposons que f est strictement négative sur [a, [] et strictement positive sur
[l,b]. Par récurrence, on montre que

a, <b, VnelN. (4.1)

En effet, on a ag < by, et si on suppose a,_1 < b,_; pour n > 1. On obtient
(Si l e [an—b Cn—l]))
Qp—1 + bn—l Ap—1 — bn—l

n_bn: n—1 — = <07
a Ap—1 9 9

ou (Sl l € [Cnfbbn*l])
- bnfl

o Ap—1 + bnfl b o Qp—1 <0
= -— n—-1— — - .

n_bn -
“ 2 2

Donc a, < b, pour tout n € IN. Par ailleurs, on a établi que

Ap—1 — bnfl

a, — b, = 5 , Vn € IN.
Par récurrence, on en déduit que
a—2>b
a, — b, = o Vne N (4.2)

De plus, d’aprés (4.1) et (4.2), on en déduit que les suites (a,) et (b,) con-
vergent vers la méme limite notée [. En effet, la suite (a,) est croissante (et
(b,) est décroissante) puisque par définition de (a,,), soit

Apy1 — Ap = 07
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soit,
07% + bn bn — Qp
Ap+1 — Qp = — Qp, .

2

De (4.1), on déduit que (a,) est croissante, majorée par by (respective-

ment, (b,) est décroissante et minorée par ag). Par conséquent, elles con-

vergent toutes deux, et compte tenu de (4.2), elles convergent vers la méme
limite.

De plus, comme f(a,)

a,) < 0 pour tout n, on obtient par passage a la limite
limy, 400 f(un) = f(I) < 0. De méme, comme f(b,) > 0, par passage & la
limite, on obtient f(i) > 0. Donc f(I ) = 0, et comme f admet une unique
racine dans [a,b], on a | = [. D’autre part, comme [ € [an,b,], d’aprés (4.2),
on déduit que

|an—bn|:|an—l|+|bn—l|§|a2;nb| VnelN.

Donc on a |a, — 1] < |a H vpneNet, -1 < ‘a%b‘ V' n € IN. La

convergence de (a,) et (b ) vers [ est donc “géométrique” (la convergence est

de 'ordre de 2—n) La preuve du théoréme 4.1 est achevée.

4.3 La méthode des approximations successives

Dans cette partie ainsi que dans ce chapitre, on sera amené a utiliser les
lemmes suivants

Lemme 4.2 On considére une suite de nombre réels (u,,) satisfaisant la con-
dition suivante : il existe k €]0, 1] tel que

|uns1] < klu,|, Vne IN. (4.3)
Alors la suite (u,,) converge vers 0 et la vitesse de convergence est géométrique.
Preuve Montrons par récurrence que

lun| < E"|ug|l, Vn € IN.

Le résultat est vrai pour n = 0, puisque |uo| < k°|uql.
Supposons le résultat est vrai au rang n. On a alors d’aprés (4.3) et par
hypothése de récurrence :

[tuni1] < klun| < k.E™|ugl.

Le résultat est donc vrai pour tout n € IN. Comme k €]0,1[, on en déduit
que k™ tend vers 0 quand n tend vers I'infini, et il en résulte que (u,) tend
vers 0 et la vitesse de convergence est géométrique.
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Lemme 4.3 On considére une suite de nombre réels (u,,) positifs satisfaisant
la condition suivante : il existe C > 0 tel que

Uyt < Cluyl?, ¥n € IN. (4.4)

Alors on a
k_ k
Uy < C? 1u(2) )

Preuve Effectuons un raisonnement par récurrence sur n. Le résultat est
vrai pour n = 0. Supposons le vrai au rang n (n > 0). D’aprés (4.4) et
I’hypothése de récurrence, on obtient

n__ ny 2 n4+1_ n+1
Uny < Cu2 < C(C”2)? = ¢ 2

Le résultat est donc vrai pour tout n € IN.

4.3.1 Le théoréme du point fixe
Définition 4.4 Soit f une fonction définie sur [a,b] & valeurs réelles. On

dit que a € [a,b] est un point fize de f si f(a) = a.

Définition 4.5 Soit f une fonction définie sur [a,b] 4 valeurs réelles. On
dit que f est une fonction contractante si il existe un réel k €]0, 1] tel que

[f(@) = f)I < kle =yl ¥ (z,y) € [a,0]". (4.5)

On rappelle le résultat suivant établi dans le cours de topologie.
Soit (u,) une suite d’un espace vectoriel normé E, et F' une partie fermée de
E. Siwu, € F pour tout n € IN et si (u,) converge vers [ € F, alors [ € F.

Le théoréme du point fixe joue une trés grand role en analyse. La méthode
des approximations successives présentées ici repose sur ce théoréme dont on
donne I’énoncé et la démonstration.

Théoréme 4.6 (théoreme du point fize)
Soit f une fonction définie sur [a,b] & valeurs réelles satisfaisant les deux
conditions suivantes :

e f(la,b]) C [a,b] (on dit que |a,b] est stable par f).
e [ est une fonction contractante sur [a,b] au sens de la définition 4.5.

Alors il existe un unique « € [a,b] tel que f(a) = a. De plus, la suite (u,)
définie par un+1 = f(un), uy € |a,b] converge vers .
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Preuve
S’il existe un point fixe de f alors il est unique. En effet, soient x, et x5 deux
points fixes de f tels que z1 # x5. Alors, comme f est contractante, on a

|f(z1) = f(z2)| < Klz1 — 22,

donc
|f($1) - f($2)|

k>
|z1 — 2

= 1.

Contradiction (k €]0,1[).

Pour montrer existence du point fixe, nous allons montrer que la suite (u,,)
définie par u,1 = f(u,) est une suite de Cauchy. Remarquons que compte-
tenu de (4.5)

|un+1 - un| = |f(un) - f(un—1)| < k‘un - un—1| Vn > L.
D’aprés le lemme 4.2 appliqué a la suite (Ju,11 — uy|), on obtient
|un+1 - un| < kn|u1 - u0|7 Vn e IN.

Par inégalité triangulaire, on en déduit que pour p € IN et n € IN, on a

n+p—1 n+p—1
|Untp — Un| < Z w1 — wi| < Z k' luy — g
i=n i=n

Comme la série Y k™ converge (car 0 < k < 1), on en déduit que (u,) est
une suite de Cauchy dans IR, espace complet. La suite (u,) converge vers «,
et comme [a, b] est fermé, on a « € [a, b].

Comme f est continue, on a

g, e = 0= i f(un) = F(lm, ) = (e

On obtient que « est un point fixe de f. Ceci achéve la preuve du théoréme
4.6.

Remarque 4.7 On peut établir un résultat analogue dans un cadre beaucoup
plus général que celui donné dans le théoreme 4.6, par exemple dans le cadre
des espaces métriques complets.

Ici, soit E un espace vectoriel normé complet et ¢ une application définie
sur E & valeurs dans E (E est un espace métrique pour la distance d(x,y) =
lz—y||). On suppose que ¢ est contractante, c¢’est-a-dire qu’il existe k €]0, 1]
tel que

lo(x) = ¢(W)lle < klz—ylle V (x,y) € B
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Alors il existe un unique o € E tel que ¢p(a) = a. De plus, la suite (uy)
définie par u,1 = ¢(u,), ug € E converge vers a.

La démonstration de ce résultat tres important est identique a celle donnée
dans le théoréme 4.6. Pour l'obtenir, il suffit de remplacer la norme sur IR
par celle sur E.

Etudions le cas particuliers ou f est de classe C* sur [a, b].
Proposition 4.8 Soit f € C'([a,b]). On suppose que

k= max |f'(z)] < 1.
z€a,b]

Alors f est contractante sur [a,b).

Preuve D’aprés le théoréme des accroissements finis appliqué entre x et y
(2,) € [a, )%, on a

1fy) = f@)| = 1f(O)ly — x|, c€la,b].
Compte-tenu de I’hypothése, on en déduit que

[f(y) = f(@)| < kly — 2| V(2,y) € [a,0]".

4.3.2 Résolution de I’équation f(x) = 0 par la méthode du point
fixe

Exemple Considérons 'équation 22 — 22 — 1 = 0. Une étude de la fonction

f(x) = 2 — 2% — 1 permet de montrer que cette équation admet une unique
racine dans [1,2]. En effet, la dérivée de f est donnée par f'(z) = 3% —
2z et [’ est de signe strictement positif sur [1,2], donc la fonction f croit
strictement sur [1,2]. Comme f(1).f(2) = —3 < 0, on déduit du théoréme
des valeurs intermédiaires qu’il existe un unique élément [ € [1, 2] tel f(I) = 0.
Transformons ’équation de telle sorte a I’écrire comme un probléme de point
fixe. Plusieurs transformations sont possibles. On peut par exemple écrire
I’équation sous la forme

r=a—2*+r—1

ou encore 1
r= (22 +1)3.

Etudions les solutions de I'équation 2 = (22 + 1)3. Posons g(z) = (2% + 1)3

et montrons que le théoréme du point fixe 4.6 s’applique sur [1,2] & ¢g. La

fonction g est croissante sur [1,2], on a donc

9([1,2]) = [9(1), 9(2)].
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Or, g(1) = 23 € [1,2] et g(2) = 53 € [1,2], donc la premiére hypothése du
théoréme 4.6 est bien satisfaite.
D’autre part, on a

2 2
J(z) = gx(xQ +1)75.

Pour tout = € [1,2], on a
’ 2 . 2
lg'(x)] < 522 5 <1 Vrell2.

D’aprés le théoréme 4.6 et la proposition 4.8, on déduit que la suite ()
définie par xy € [1,2] et z,41 = g(x,) converge vers I'unique point fixe de g
dans [1,2]. Ce point fixe n’est autre que la solution de I’équation f(x) = 0.

Remarque 4.9 Un intérét du théoréme 4.6 est que la convergence est as-
surée pour un choix quelconque de xo dans |a,b]. Il n’en va pas de méme dans
la méthode de Newton que nous aborderons ultérieurement, qui peut s’avérer
divergente si xy est choisi trop loin du point fize.

Soit € > 0. On peut se demander combien d’itérations sont nécessaires
pour obtenir une estimation de l'erreur e, := |x,, —[| plus petite que e. C’est
I'objet de la proposition :

Proposition 4.10 Soit la suite (u,) définie dans le théoréme 4.6. Alors le
nombre d’itérations nécessaires pour que |u, — | < € est donné par

- In(e) — In |ug — l|‘

- Ink

Preuve
On a

Jtn =1 = |f (un—1) = ()| < kfun —1].
On en déduit par récurrence que
lup, — | < E™|ug—1], VneéelN.
Donc une condition suffisante pour obtenir que |u,, — [| < € est que
k™ ug — 1] <e.
Cette condition équivaut a
nlnk +In|uy — I <In(e),
soit

. In(e) — In|up — l|.
- Ink
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Définition 4.11 Soit f une fonction de classe C*([a,b]) et o un point fize
de f. On dit que a est un point attractif s

[f ()] < 1.

On dit que a est répulsif si

|[f ()] > 1.

L’une des difficultés pour appliquer le théoréme du point fixe réside dans la
détermination d’un intervalle stable par f. La proposition suivante donne
une réponse a cette interrogation :

Proposition 4.12 Soit g : [a,b] — IR une fonction de classe C sur [a,b].
Soit | € [a,b] une point fize de g. On suppose que

' (D] < 1.

Alors il existe un intervalle [«, 5] C |[a,b] contenant | pour lequel la suite
définie par xg € [a,b] et x,41 = g(x,) converge vers .

Preuve
On suppose que 0 < ¢'(I) < 1. Comme ¢’ est continue au point /, il existe un
intervalle [« 5] contenant [ tel que

0<d(x)<1l Vzelnpf
En effet, par continuité de ¢’ au point x = [, on a :
Ve>0, dn>0Jz—1|<n, |¢(x)—4d)]<e
On choisit alors € > 0 assez petit pour que
0<g(l)—e<dx)<gd()+e<l, Yzell—-nl+n.

On pose alors o« = [ —n et f =1+ 7. Reste & montrer que [«, 8] est stable
par g. On a d’aprés le théoréme des accroissements finis appliqué entre o et
[

l—g(a) =g(l) —gla) =g (NI —a), 7€l
Comme ¢'(7) < 1, on a
l=gla) < (l—a),

soit a < g(a). On montre de méme que 5 > g(f). Comme g est croissante
sur [«, f], on a bien g([a, 8]) C [«, 5]. D’autre part, pour tout x € [a, 8], on
a |¢'(x)] < 1. D’apres la proposition 4.8, la fonction g est donc contractante
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sur cet intervalle. On peut alors appliquer le théoréme du point fixe & g
restreint a [«, 5] et obtenir ainsi la conclusion désirée.
Le cas —1 < ¢'(l) < 0 se traite de maniére analogue.

Etudions & présent le cas |¢’({)| > 1. On a la proposition :

Proposition 4.13 Soit | une solution de [’équation g(x) = x. Si g est
continue au voisinage de | et si |¢'(1)| > 1, alors la suite définie par x,11 =
g(xy,), To # | ne converge pas vers l.

Preuve Supposons zg # [. Soit [a, §] un intervalle contenant [ et tel que

k:= min |¢'(x)| > 1.
z€la,pf]
Un tel intervalle existe puisque ¢’ est continue au point [ et |¢'(1)| > 1. Soit
n € IN. Alors, seules deux éventualités sont possibles :
ou bien z,, ¢ [«, 3] ou z,, € |a, ] et alors d’aprés le théoréme des accroisse-
ments finis appliqué a g entre x,, et [, on obtient

lg(z0) — g(O)] = 1g'(n)(xn = DI, 1 €], UL, 2.

soit

|Tpi1 — U > K|z, — .
On en déduit que l'erreur e,, = |z,, — | ne peut pas tendre vers 0. En effet, ou
bien il existe une infinité d’entiers n tels que =, ¢ [a, (] et par conséquent,
(x,) ne converge pas vers [, ou alors il existe un entier ng tel que pour tout
n > ng, ON a

[ Zngr — U = klz, — 1,
et dans ce cas, on déduit par récurrence que

|2 — 1] =2 K", — 1,

et par conséquent, la suite (z,) ne converge pas vers [ puisque k" " tend
vers +o0o quand n tend vers l'infini.

Récapitulons la marche & suivre afin d’étudier des suites de la forme u, 1 =
g(uy) (g dérivable) en utilisant la méthode du point fixe. Soit [ un point fixe
de g.

e Si |¢'(1)] > 1, ou on élimine la méthode ou on peut travailler avec g—*

puisque | |
U=y T ym <t

e Si|¢/(1)] < 1, il faut trouver un intervalle [a, b] stable par la fonction g.

e Si |¢/(])| = 1, on peut avoir convergence ou divergence.
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4.4 La méthode de la corde
4.4.1 Fonctions convexes

On rappelle quelques résultats concernant les fonctions convexes.

Définition 4.14 Soit f : I — IR. On dit que f est convexe sur I si pour
tout (x,y) € I?, pour tout t € [0,1], on a

fltz+ (1 =t)y) <if(x)+ (1 =1)f(y). (4.6)

On dit que f est strictement convexe sur I si pour tout (x,y) € 1%, pour tout
t €]0,1[, on a

fltz+ (1 =t)y) <tf(z)+ (1 —1)f(y).
Lorsqu’on inverse le sens des inéqgalités précédentes, on dit que f est concave
sur 1.

De la définition 4.14, on déduit la proposition :

Proposition 4.15 Soit f une fonction conveze définie sur [a,b], et s,t,u €
[a,b] tels que s <t < wu. Alors on a :

f{t) = f(s) < flw) - f{t)

4.
t—s u—t ( 7)

Si on suppose que f est dérivable sur I, on peut caractériser la convexité
grace a la dérivée premiére.

Théoréme 4.16 Soit f : I — IR une fonction dérivable sur I. La fonction
f est convexe si et seulement si

fy) = fz) + @)y — ), Y(zy) el (4.8)
La fonction f est strictement convexe si et seulement si
fy) > fz) + f'(2)(y — ), Y(z,y) el (4.9)

La fonction f est concave si et seulement si les inégalités dans (4.8) et (4.9)
sont inversées.

Démonstration Si f est convexe, on peut écrire

fle+tly—z) < (1 —1t)f(x) +tf(y),
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soit, pour t # 0

flz+tly —x)) — f(x)

t < f(0) — f(a).

inégalité que I'on peut réecrire sous la forme
[+ ity — =) — f(z)

ty — )
Or, comme f est dérivable au point z, on a

i S @y =) = f(2)
=0 t(y — )

(y—x) < fly) = f(z). (4.10)

= f'(=).
Faisant tendre ¢ vers 0 dans l'inégalité (4.10), on obtient

o [+ = 2) = (@)

t—0 t(y — x) (y— ) < fly) — f(2),

d’ou

@)y —=) < fly) — f(a).
Réciproquement, supposons (4.8) satisfaite. Alors, remplaéant x par y +
t(x — y) dans (4.8), on obtient pour ¢t €]0, 1]

fw) > fly+tlx—y) —tf (y+tlx—y)(r—y).

De méme, remplaéant y par x et x par y + t(z — y) dans (4.8), on obtient

f@) > fly+ta—y)+ (1 =t)f (y+tz—y))(z—y),

et il suffit d’additionner les deux inégalités ci-dessus, multipliées respective-
ment par (1 —t) et ¢ pour obtenir (4.18).
On admettra (4.9).

Remarque 4.17 Le théoréme 4.16 exprime que la courbe représentative de f
est au-dessus de la tangente au point d’abscisse xg, xo quelconque appartenant

al.
Exemple d’application Considérons la fonction f(x) = Inz pour z > 0.

D’aprés le théoréme 4.16, pour établir la concavité de f sur |0, +oo[, il suffit
de montrer que

1
E(y - l’) > hly - IHZL‘, V(I,y) 6]07+OO[2a
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soit encore

In(?) <

; —1 V(z,y) €]0, +oc[.

SHES

On considere la fonction auxiliaire g définie par

u
g(u) = ln(;) - 1, Vu>0.

g admet un unique maximum atteint en u = x, et
< 0 pour tout u > 0. Il en résulte que f est concave.

On admettra le théoréme suivant qui sera établi dans le chapitre consacré
aux développements limités.

Théoréme 4.18 Soit f une fonction deux fois dériwvable sur I. Alors f est
conveze sur I si et seulement si

f"(x) >0, Vzel.

Si
f'(x) >0, Veel

alors f est strictement convexe sur I.

Exemples 1. La fonction exponentielle est dérivable sur IR, de dérivée sec-
onde égale a e”. Cette fonction est donc strictement convexe sur IR.

2. Les fonctions de la forme ax?®+ bz + c avec a > 0 sont strictement convexes
sur IR. En effet, on a (ax? + bx + ¢)? = 2a > 0.

3. On considére la fonction définie sur IR par f(z) = 2% + 2sinz. Montrons
que f est convexe sur IR. La fonction f est deux fois dérivable sur IR et on
a pour tout x € IR légalité f”’(z) = 2 — 2cosz. Comme f"(x) > 0 sur IR,
on déduit du théoréme 4.18 que f est convexe sur IR.

De la convexité de f sur IR, on peut déduire I'inégalité

2
sinxzx—%, Vz e IR. (4.11)

En effet, la tangente (T') & la courbe représentative de f au point x = 0 est
donnée par y = 2x. Or, d’aprés le théoréme 4.16, la courbe représentative
de f est au-dessus de la tangente (7). On en déduit que

2+ 2sinz > 2z,

soit (4.11).
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4.4.2 Convergence de la méthode de la corde

Soit f une fonction de classe C? sur [a, b], convexe et strictement croissante
sur [a, b] tel que f(a).f(b) < 0. On considére le segment dont les extrémités
sont les points A(a, f(a)) et B(b, f(b)). Ce segment coupe 'axe des abscisses
au point de coordonnée (x,0). Calculons x;. L’équation de la droite (AB)
est donnée par

y=r1(—a)+ f(a),

b) —
avec 7 = M. x, satisfait
b—a
0 :7-(1'1 _a) +f(a)>
donc xy = a — f(a) . On peut alors construire une suite par récurrence

-
en procédant de la faéon suivante : étant donné x,, le terme x,,; est
I'intersection de la droite passant par A, (z,, f(z,)) et le point B(b, f(b)).
La suite récurrente ainsi définie est

C () (4.12)
Tp4+1 = Tn T
ou
_ f) = flaa)
" b—ux,

On peut montrer le théoréme

Théoréme 4.19 Soit f € C?%([a,b]), conveze et strictement croissante sur
[a,b] tel que f(a).f(b) < 0. Alors la suite (x,) converge vers a, unique zéro
de f dans [a,b], et la convergence est géométrique.

Preuve

Etape 1 La suite (z,) converge vers .

Montrons par récurrence sur k que xp < « pour tout k.

Le résultat est vrai pour k£ = 0 puisque xo = a. Supposons zp < . On a

flan)(b—z) _ fO)(zx — ) + f(z)(a —b)
f(0) — f(zx) f(0) — f(zx)
Comme f est convexe et x, < o < b, on a d’aprés la proposition 4.15

Flo) = S _ J0) = fo)

o — Ty, - b—a

Tpp1 — Q=T — Q. — . (4.13)
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De cette inégalité, et comme f(a) = 0, on déduit que

J0) (e — ) + fla)(a—b) <0.

Donc d’aprés (4.13), on déduit que xp1; < a. Par récurrence, on a donc
xr < a pour tout k. Comme f est croissante et o est un zéro de f, on en
déduit que

f(ZEk) <0, Vk e IN.
Il résulte de (4.12) que (z,,) est croissante et majorée par a, donc elle converge
vers [. On en déduit que lim,,_, ., 7 existe et vaut £ f (l # 0.
Passons a la limite dans (4.12). On obtient

f{0)

- >
hmn~>+oo Tk

l=1-

donc f(I) =0, et comme f admet pour unique racine o, on a [ = .
Etape 2 Estimation de l’erreur ¢, := o — .

Compte-tenu de 'étape 1, on a ¢, > 0 pour tout & > 0. Par ailleurs, on
a d’aprés (4.12)
f ()

Tk

€k+1 = €k + (414)

D’autre part, la suite (7) est bornée puisqu’elle converge et elle est composée
de termes positifs. Il existe M > 0 tel que

0<m <M, VE>0. (4.15)
D’aprés le théoréme des accroissements finis entre xy et a, on a
fla) = fla) = (xp — ) f(Ok), Ok Elzk, .

Puisque f’ est croissante (car f est convexe et deux fois dérivable)), il en
résulte que

x ! / !/
S ) e 7@, s (4.16)
De (4.14) et (4.16), on déduit que
x (0
€k+1 = €k + Mék = Gk(l — M)
Tk€k Tk
Minorons / (ek) Comme f est convexe sur [a, b] et de classe C?, la fonction

Tk
f" est croissante. D’aprés (4.16) et (4.15), on obtient :

f'©0) _ f'(a)
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On déduit que pour tout £ > 0, on a

f'(a
0 S €k+1 S (1 - %)Ek
D’aprés le lemme 4.2, on déduit que
/!

0<e <(1— f]\(j))k% Vke N, (4.17)

Donc la convergence de (xy) vers « est du méme ordre que celle de
/

(1-— %)k . La convergence est géométrique, et la preuve du théoréme est
achevée.

4.5 La méthode de Newton
4.5.1 Description et convergence de la méthode

Soit f une fonction définie sur [a,b] & valeurs réels, de classe C'! et convexe
sur [a,b] admettant une racine [. Soit zy € [a,b]. On considére la tangente
(T) a la courbe représentative de f au point d’abscisse xo. Son équation est
donnée par

y = f(z0) + f'(20)(x — z0).
Elle coupe I'axe des abscisses au point x;. Le point de coordonnée (z1,0)
appartient a (T), on en déduit que

On peut alors considérer la tangente a la courbe représentative de f au point
x1 et raisonner comme précédement. Réitirant ce procédé, on construit une
suite numérique (z,) dont on peut penser qu’elle converge vers .

La suite générée ici est donnée par

n

(4.18)

Si (z,,) converge vers [ et si f'(l) # 0, on alors par passage a la limite

S

vy

donc f(I) =0.
La méthode de Newton est convergente si xg est choisi assez proche de [.
C’est ce qu’exprime le théoréme suivant :
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Théoréme 4.20 Soit f de classe C? sur [a,b]. On suppose qu’il existe | €
la,b] tel que f(1) =0 et f'(I) # 0.

Alors si |xg — 1| est assez petit, la suite (x,,) est bien définie et converge vers
. De plus, il existe une constante C' > 0 telle que pour tout n

1 n
2, — 1] < =(Clwg —1])*". (4.19)
C
Preuve
Comme f'(1) # 0, par continuité de f’ au point [, on déduit qu’il existe n > 0
tel que f'(z) # 0 sur J :=| —n+ 1,1+ n[. En effet,
Ve>0, In>0, [z—1<n [f(z)-f)<e
Il en résulte que pour tout x € J :=] —n+ 1,1 +nf, on a

—e+ (1) < fl(x) < e+ f'(1).

Supposons f'(1) > 0. Il suffit alors de choisir € assez petit de telle sorte que
—e+ f'(I) > 0 pour obtenir la stricte positivité de f’ sur J. On raisonne de
maniére analogue pour traiter le cas f'(I) < 0.

Quitte & travailler avec —f, on peut supposer que f’'(z) > 0 sur J. Posons

)
M= iy
On a I’égalité @ 0
T C) e AU)
o(x) — 1= [ )

D’aprés la formule de Taylor-Lagrange appliquée a f entre x et [, on obtient

| )l =0

f) = f(x) = f'(z)(l — ) 5 e €]l z[U), 1.
Il en résulte que o)
f" (N 2
-1l = —1
6() ~ 1] = gratele =1
puis que .
() — 1] < Peelan @] 2 o g2 (4.20)

2| f'(x)|

avec C = m[a>§] |f"(z)]}2 mi? f'(z). Quitte & réduire 7, on peut supposer
xE|a, e

n< 4. Alorssiz e J, onad(z) € J puisque |¢p(x) —I| < Cn*> < 7. On a
donc établi que pour zy € J, la suite 2,41 = ¢(x,,) est bien définie (et x,, € J
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pour tout n).
Posons ¢, = |z — [|. D’aprés (4.20), il existe une constante C' > 0 telle que

ery1 < Cex Ve IN. (4.21)
D’aprés le lemme 4.3, on déduit que
€ < Czk_legk Vk>0.

On en déduit que si
C’Q?O — ll <1,

alors (z,,) converge vers [ (puisqu’alors (C|zg—1])*" tend vers 0 quand n tend
vers l'infini), et de plus, 'inégalité (4.19) est établie. Ainsi, pour assurer la
convergence de la méthode, il est nécessaire que la donnée initiale soit assez
proche de [.

Remarque 4.21 La méthode de Newton ne converge pas nécessairement
vers la solution de I’équation f(x) = 0, comme lindique le théoreme 4.20.
En effet, si xg est choisi trop loin de la solution de l’équation, la méthode
peut diverger. En pratique, on peut appliquer la méthode de dichotomie afin
de s’approcher de la solution de [’équation, puis mettre en oeuvre la méthode
de Newton qui converge beaucoup plus vite vers la solution que la méthode de
dichotomie.

Nous allons donner & présent des conditions suffisantes sur f permettant
d’assurer la convergence de la suite définie en (4.18) pour certaines valeurs
de x.

Théoréme 4.22 Soit f € C*([a,b]). On suppose que
* (1) f(a).f(b) <O
e (2) f'(z) # 0 pour tout x € [a,b] (f est strictement monotone).
e (3) f"(x) # 0 pour tout x € [a,b] (f ne change pas de concavité).

Alors pour tout xo € |a, b] tels que f(xo).f"(x0) > 0, la suite définie en (4.18)
converge vers l'unique solution de I’équation f(x) = 0.

Preuve Dans la suite on suppose que f”(z) > 0 sur [a,b] (et donc f(zg) >0
compte tenu de 'hypothése f(zo).f"(x¢) > 0) et que f'(x) > 0 sur [a,b]. Les
trois autres cas se traitent de fagon analogue a celui-ci et leurs démonstrations
sont laissées au lecteur.

Les conditions (1) et (2) assurent I'existence et l'unicité d’une racine simple
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[ € [a,b] de I'équation f(z) = 0.
Etape 1. La suite (z,) est minorée par |
De (4.18) et de la formule de Taylor-Lagrange appliquée & f entre z,, et [,

FO) = f(o) = P =) + Tl T

on déduit les égalités

(1= 2) [ (an) + 22 17 ()
f/(IN)

=z, —

(In—l)2 I (en)
2 flzn)”

Il en résulte que si f’(x) et f'(z) sont de méme signe sur [a,b] alors pour
n >0, r,41 — [ > 0. La suite est minorée par [ a partir du rang n > 1.
Etape 2. La suite (z,) est décroissante.

la fonction f est strictement croissante sur [a,b] et on a donc f(z) > 0 pour
x> 1.

On a alors puisque f(xg) >0

f(x0)
f'(x0)

Puisqu’on a supposé que f’'(z) > 0 sur [a, b], la fonction f est croissante sur
[a,b] et comme x,, > [ pour tout n > 1, on déduit que f(z,) > f(I) =0. On
apourn > 1

f(@n)

f'(zn)
Donc la suite (z,,) est décroissante. Comme elle est minorée par [, elle con-
verge, et on a vu qu’elle converge vers [.

<z =29 — < Zg.

| < xpi1 =x, < Ty

4.5.2 Méthode de Régula Falsi

La méthode de Newton comporte un autre inconvénient que celui de ne pas
converger pour n’importe quelles valeurs de xy3. En pratique, on ne connait
pas nécessairement I'expression de [’ en tous points. On peut alors approcher
la valeur f’(z,) par le quotient aux différences finies

f(xn) - f(xnfl>‘

Tn — Tp—1
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On obtient alors la méthode de régula-falsi :

f(@n)(2n — 1)

I T T ) = F(@a)

On peut alors montrer le théoréme :

(4.22)

Théoréme 4.23 Soit f € C?*([a,b]). On suppose que f admet une unique
racine | € [a,b] et que f'(1) # 0 et f'(1) # 0. Alors il existe n > 0 tel que si
xo,x1 €] —n+ 1,1+ n[, la suite (x,) converge vers .

4.5.3 Ordre d’une méthode

Définition 4.24 Soient g € C°([a,b] a valeurs dans [a,b] et xo € [a,b] On
consideére la suite x,11 = g(x,) et on suppose que (x,) converge vers .
Une méthode définie par x,1 = g(x,) est dite d’ordre p s’il existe C > 0

telle que
|z — 1| < Cla, =P VnelN. (4.23)

Une méthode d’ordre 1 est dite linéaire, une méthode d’ordre 2 est dite
quadratique.

Remarque 4.25 D’apres la définition 4.24, si une méthode est d’ordre p,
elle est aussi d’ordre m < p puisque & partir d’un certain rang, on a l’inégalité

|z, —UP < |z, — ™.

Précisons l'ordre des méthodes de résolution de 1’équation f(z) = 0 rencon-
trées dans ce cours.

Proposition 4.26 La méthode des approximations successives ainsi que la
méthode de la corde sont des méthodes d’ordre 1 au moins. La méthode de
Newton est une méthode d’ordre 2 au moins.

Preuve On a montré que la méthode du point fixe est au moins une méthode
d’ordre 1 puisque, sous les hypothéses du théoréeme 4.6, on a

st — U] = |f(2n) = FO] < Kl — 1], Vne DN,

Il en va de méme dans la méthode de la corde, compte-tenu de ce qui a été
établi en (4.17).

D’aprés (4.21), il résulte que la méthode de Newton est d’ordre 2 au moins.
Enfin, on peut montrer la proposition suivante :
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Proposition 4.27 La méthode de Régula Falsi est d’ordre p = 1%

IS

Explicitons a présent la définition 4.24 dans le cas ou g est trés “réguliére”,
par exemple de classe CP.

Proposition 4.28 Soit g une fonction de classe C? sur [a,b] et | un point
fixze de g. On suppose que [a,b] est stable par g et on considére la suite

Tpt1 = g(l‘n>
La méthode est d’ordre p si et seulement si

JO=g"0)=-=g"") =0, et gV #0.

Preuve La fonction ¢ étant de classe C? au point x = [, elle admet un
développement limité & ’ordre p en ce point. On a donc

eni1 = Tni1 — L= g(xy) Z gk' T — D+ o((z, — 1)P).

Supposons que

JU) = g'() == g7 =0, et g"(D) £0.

On a alors
21 =1 = [P D20 = U + o((z, — D)P),
Donc, on a bien (4.23).

Supposons qu’il existe un entier m tel que m < pet g m)( ) # 0 (et supposons
que m soit le plus petit entier satisfaisant cette propriété). Alors

s =1 g™ (@)
Comme % tend vers +oo quand n tend vers l'infini (p —m > 0), o
n l
% tend vers +o00 quand n tend vers +oo : la méthode ne peut donc
Ty —

pas étre d’ordre p. Ceci achéve la preuve de la proposition 4.26.

4.6 Accélération de la convergence

Théoréme 4.29 Si la méthode définie par x,.1 = g(x,) converge vers | et
i M;l — A € R alors la suite (z),) définie par
Ty —

_ 2
7 =z, — (Tnt1 = Zn) (4.24)
Tn42 — 29371—5—1 +
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converge vers | plus rapidement, c’est-a-dire que

/ —
im Tl
n—+oo T, — [

Preuve Posons e,, = z,, — [. Par hypothése, il existe A et (¢,) tels que
eni1 = (A+€,)en, (4.25)

ol €, tend vers 0 quand n tend vers +oo. En effet, il suffit de poser pour

tout n € IN

€n

€ =

On a
ent2 = (A+ €q1)ens1 = (A4 enq1)(A+€n)en.

D’autre part,
Ty — 2Tpy1 + Ty = Tpao — 1 — 2(xp — 1) + 2 — 1 = €ppo — 26541 + €5
Il en résulte que

Tpao — 2Zpi1 +Tn = (At €p1)(A+€,) —2(A+€,) + 1e,

= ((A=1)2+0))en (4.26)
avec
On, = (€nt1 + €n)A — 26, + €pp16n.
De plus, d’apreés (4.25)
Tl — Tpn = (A—14¢€,)e,.
Donc,
ool =g —]— (Tng1 — m0)? — e _ (A—1+e)e
" " Tpio — 2Tpp1 + 2, ((A—=1)2+0,)e,
ou encore b e (A1 )
Tl G 2a(A-1) - ¢ (4.27)

T, —1 (A-1)2+6,

Remarquons que 6,, tend vers 0 quand n tend vers I'infini (car €, tend vers

O, — 26,(A—1) — €2

0 quand n tend vers +o00). Donc A-17+e, “ tend vers 0 quand n

/
Ty —

Ty —

tend vers +oo. Compte-tenu de (4.27), on en déduit que tend vers 0

quand n tend vers +oo.
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